Skip to content
Permalink
main
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
---
output:
pdf_document: default
html_document: default
---
```{r, include=FALSE}
if (!require("tidyverse")) {
install.packages("tidyverse")
library(tidyverse)
}
if (!require("caret")) {
install.packages("caret")
library(caret)
}
```
```{r}
###################
##### Abalone #####
###################
# read dataset
abalone <- read.csv("~/DataStore-DataAnalytics/abalone_dataset.csv")
dataset <- abalone
## add new column age.group with 3 values based on the number of rings
dataset$age.group <- cut(dataset$rings, br=c(0,8,11,35), labels = c("young", 'adult', 'old'))
## alternative way of setting age.group
dataset$age.group[dataset$rings<=8] <- "young"
dataset$age.group[dataset$rings>8 & dataset$rings<=11] <- "adult"
dataset$age.group[dataset$rings>11 & dataset$rings<=35] <- "old"
dataset <- na.omit(dataset)
```
```{r}
# Create dummy variables
dummies <- dummyVars(~ sex, data = dataset)
# Apply transformation
sex_dummies <- predict(dummies, newdata = dataset)
# Convert to dataframe and bind with original dataset (excluding 'sex' column)
dataset <- cbind(dataset[, !names(dataset) %in% "sex"], as.data.frame(sex_dummies))
dataset <- dataset %>% select(-rings, -sexM)
subset1 <- dataset[,1:8]
subset2 <- cbind(dataset[,9:10], dataset[,2:8])
```
```{r}
# sample create list of 105 (70% of 150) numbers randomly sampled from 1-150
set.seed(123)
n = 150
s1 <- sample(n,n*.8)
s2 <- sample(n,n*.8)
## create train & test sets based on sampled indexes
s1train <- subset1[s1,]
s1test <- subset1[-s1,]
s2train <- subset2[s2,]
s2test <- subset2[-s2,]
```
# kNN Models:
```{r}
## train and evaluate multiple knn models to find optimal k
knn.model <- train(s1train[,1:7], s1train$age.group, method = "knn", tuneLength = 10, trControl = trainControl(method = "cv"))
# print model outputs
print(knn.model)
knn.predicted <- predict(knn.model, newdata = s1test[,1:7])
# create contingency table/ confusion matrix
contingency.table <- table(knn.predicted, s1test$age.group, dnn=list('predicted','actual'))
contingency.table
# calculate classification accuracy
sum(diag(contingency.table))/length(s1test$age.group)
```
```{r}
## train and evaluate multiple knn models to find optimal k
knn.model2 <- train(s2train[,1:8], s2train$age.group, method = "knn", tuneLength = 10, trControl = trainControl(method = "cv"))
# print model outputs
print(knn.model2)
knn.predicted2 <- predict(knn.model2, newdata = s2test[,1:8])
# create contingency table/ confusion matrix
contingency.table2 <- table(knn.predicted2, s2test$age.group, dnn=list('predicted','actual'))
contingency.table2
# calculate classification accuracy
sum(diag(contingency.table2))/length(s2test$age.group)
```
# K-Means Clustering
Subset 1 had the better results, so we proceed with doing K-means clustering on that dataset
```{r}
## run tests with multiple k values and plot WCSS
k.list <- c(2,3,4,5,6,7,8)
wcss.list <- c()
for (k in k.list) {
km <- kmeans(subset1[,1:7], centers = k)
wcss <- km$tot.withinss
wcss.list <- c(wcss.list,wcss)
## get and plot clustering output
assigned.clusters <- as.factor(km$cluster)
ggplot(subset1, aes(x = length, y = height, colour = assigned.clusters)) +
geom_point()
}
plot(k.list,wcss.list,type = "b")
km <- kmeans(subset1[,1:7], centers = 4)
wcss <- km$tot.withinss
wcss.list <- c(wcss.list,wcss)
## get and plot clustering output
assigned.clusters <- as.factor(km$cluster)
ggplot(subset1, aes(x = length, y = height, colour = assigned.clusters)) +
geom_point()
```