Skip to content
Permalink
main
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
import argparse
import collections
import json
import re
import string
import copy
import torch
from torch.cuda import OutOfMemoryError
from nltk import sent_tokenize
import numpy as np
from rouge_score import rouge_scorer, scoring
from tqdm import tqdm
import logging
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S')
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
pipeline
)
from utils.eli5_helpers import normalize_answer, get_max_memory, remove_citations
from utils.reporting_helpers import write_results_to_excel, print_stats
from utils.answer_helpers import LIST_INDEXER_REGEX
QA_MODEL="gaotianyu1350/roberta-large-squad"
AUTOAIS_MODEL="google/t5_xxl_true_nli_mixture"
global autoais_model, autoais_tokenizer
autoais_model, autoais_tokenizer = None, None
def compute_f1(a_gold, a_pred):
"""Compute F1 score between two strings."""
def _get_tokens(s):
if not s:
return []
return normalize_answer(s).split()
gold_toks = _get_tokens(a_gold)
pred_toks = _get_tokens(a_pred)
common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
num_same = sum(common.values())
if len(gold_toks) == 0 or len(pred_toks) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks)
if num_same == 0:
return 0
precision = 1.0 * num_same / len(pred_toks)
recall = 1.0 * num_same / len(gold_toks)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def compute_exact(a_gold, a_pred):
"""Check whether two strings are equal up to normalization."""
return int(normalize_answer(a_gold) == normalize_answer(a_pred))
def exact_presence(short_answers, context):
"""Verify if any of the answers is present in the given context.
Args:
short_answers: list of short answers to look for in the context
context: a paragraph to search for short answers
Returns:
true if any of the short answers is present in the context
"""
n_short_answers = [normalize_answer(sa) for sa in short_answers]
n_context = normalize_answer(context)
for ans in n_short_answers:
if ans in n_context:
return True
return False
def compute_rouge(data):
"""Main function for rouge scoring.
If two references are provided,
the best score is chosen for each instance.
Args:
data: requires field `output` and `answer` (or `annotations` for ASQA)
metrics: list of evaluation metrics
Returns:
dictionary representation of rouge scores
"""
def _rouge_calculation(hypotheses,
references1,
references2=[],
metrics=['rougeLsum']):
if references2 == []:
references2 = references1
scorer = rouge_scorer.RougeScorer(metrics, use_stemmer=True)
aggregator = scoring.BootstrapAggregator()
for i in range(len(hypotheses)):
scores1 = scorer.score(references1[i], hypotheses[i])
scores2 = scorer.score(references2[i], hypotheses[i])
if scores1['rougeLsum'].fmeasure > scores2['rougeLsum'].fmeasure:
aggregator.add_scores(scores1)
else:
aggregator.add_scores(scores2)
scores = {m: [] for m in metrics}
for m in metrics:
fmeasure = aggregator.aggregate()[m].mid.fmeasure
scores[m].append(fmeasure)
for m in scores:
scores[m] = 100 * sum(scores[m]) / len(scores[m])
return scores
hypotheses = {}
references1 = {}
references2 = {}
for idx, item in enumerate(data):
hypotheses[idx] = item["output"]
if "annotations" in item and item['annotations'] is not None: # For ASQA
references1[idx] = item["annotations"][0]["long_answer"]
references2[idx] = item["annotations"][1]["long_answer"]
else:
references1[idx] = item["answer"]
references2[idx] = item["answer"]
h, r1, r2 = [], [], []
for key in references1:
h.append(hypotheses[key])
r1.append(references1[key])
if references2 is not None:
r2.append(references2[key])
h = ['\n'.join(sent_tokenize(text.lower())) for text in h]
r1 = ['\n'.join(sent_tokenize(text.lower())) for text in r1]
r2 = ['\n'.join(sent_tokenize(text.lower())) for text in r2]
scores = _rouge_calculation(h, r1, r2)
return scores['rougeLsum']
def compute_str_em(data):
"""Compute STR-EM metric (only for ASQA)
Args:
data: requires field `qa_pairs/short_answers` and `output`
Returns:
STR-EM and STR-EM-HIT ()
"""
if 'qa_pairs' not in data[0] or data[0]['qa_pairs'] is None:
return 0, 0
acc = []
hit = []
for item in data:
loc_acc = []
for qa_pair in item['qa_pairs']:
loc_acc.append(exact_presence(qa_pair['short_answers'], item["output"]))
acc.append(np.mean(loc_acc))
hit.append( int(np.mean(loc_acc) == 1) )
return 100 * np.mean(acc), 100 * np.mean(hit)
def compute_len(data):
"""Compute average length of predictions."""
res, cntr = 0, 0
for item in data:
res += len(item["output"].split())
cntr += 1
return res / cntr
def compute_qa(data):
"""Compute QA-based accuracy.
Args:
data: requires filed `qa_pairs/short_answers` and `output`
Returns:
QA metrics (QA-EM, QA-F1, QA-Hit)
"""
if 'qa_pairs' not in data[0] or data[0]['qa_pairs'] is None:
logger.warn("Warning: no QA pairs found in data")
return {
'QA-EM': 0,
'QA-F1': 0,
'QA-Hit': 0,
}
# Load model
logger.info("Loading the RoBERTa-large SQuAD model for QA-based accuracy...")
qa_pipeline = pipeline("question-answering", model=QA_MODEL, device=0)
logger.info("Done")
# Get prediction
logger.info("Computing the QA-based accuracy...")
em, f1, bins = [], [], []
for item in tqdm(data):
question = [qa_pair['question'] for qa_pair in item['qa_pairs']]
context = item['output'] if len(item['output']) > 0 else " "
results = qa_pipeline(question=question, context=context, handle_impossible_answer=True)
loc_counter, loc_em, loc_f1 = 0, 0, 0
for idx, res in enumerate(results):
answers = item["qa_pairs"][idx]["short_answers"]
prediction = res["answer"]
loc_em += max([compute_exact(a, prediction) for a in answers])
loc_f1 += max([compute_f1(a, prediction) for a in answers])
loc_counter += 1
em.append(loc_em / loc_counter)
f1.append(loc_f1 / loc_counter)
bins.append(loc_em == loc_counter)
return {
'QA-EM': 100 * np.mean(em),
'QA-F1': 100 * np.mean(f1),
'QA-Hit': 100 * np.mean(bins)
}
def compute_mauve(data):
"""Compute Mauve score."""
logger.info("Computing MAUVE...")
human_data = []
model_data = []
for item in data:
# Remove ending punctuations
# Remove any new lines
# Truncate by 100 words
human_data.append(' '.join((item['question'] + " " + item['answer'].strip()).split()[:100]).rstrip(string.punctuation))
model_data.append(' '.join((item['question'] + " " + item['output'].strip()).split()[:100]).rstrip(string.punctuation))
import mauve
out = mauve.compute_mauve(
p_text=human_data,
q_text=model_data,
device_id=0,
max_text_length=512,
verbose=True,
batch_size=8,
featurize_model_name="gpt2-large"
)
return out.mauve * 100
def _run_nli_autoais(passage, claim, max_length=None):
"""
Run inference for assessing AIS between a premise and hypothesis.
Adapted from https://github.com/google-research-datasets/Attributed-QA/blob/main/evaluation.py
"""
global autoais_model, autoais_tokenizer
input_text = "premise: {} hypothesis: {}".format(passage, claim)
tokenizer_kwargs = {"return_tensors": "pt", "text": input_text}
if max_length:
tokenizer_kwargs.update({"max_length": max_length, "truncation": True})
input_ids = autoais_tokenizer(**tokenizer_kwargs).input_ids.to(autoais_model.device)
with torch.inference_mode():
outputs = autoais_model.generate(input_ids, max_new_tokens=10)
result = autoais_tokenizer.decode(outputs[0], skip_special_tokens=True)
inference = 1 if result == "1" else 0
return inference
def compute_claims(data, batch_size):
global autoais_model, autoais_tokenizer
if autoais_model is None:
logger.info("Loading AutoAIS model...")
autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, max_memory=get_max_memory(), device_map="auto", offload_folder="offload_nli_2")
autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL, use_fast=False)
logger.info("Computing claims...")
scores = []
oom_count = 0
for i in tqdm(range(0, len(data), batch_size)):
batch = data[i:i+batch_size]
batch_scores = []
for item in batch:
normalized_output = remove_citations(item['output'])
entail = 0
claims = item["claims"]
for claim in claims:
try:
entail += _run_nli_autoais(normalized_output, claim)
except OutOfMemoryError:
oom_count += 1
logger.warning(f"CUDA out of memory error. Retrying with max_length=1024. OOM count: {oom_count}")
torch.cuda.empty_cache()
try:
entail += _run_nli_autoais(normalized_output, claim, max_length=1024)
except OutOfMemoryError:
logger.error(f"CUDA out of memory error persists even with max_length=1024. Skipping this claim.")
continue
batch_scores.append(entail / len(claims))
scores.extend(batch_scores)
logger.info(f"Total CUDA out of memory errors encountered: {oom_count}")
return 100 * np.mean(scores)
def compute_autoais(data,
decontext=False,
concat=False,
qampari=False,
at_most_citations=None,):
"""
Compute AutoAIS score.
Args:
data: requires field `output` and `docs`
- docs should be a list of items with fields `title` and `text` (or `phrase` and `sent` for QA-extracted docs)
citation: check citations and use the corresponding references.
decontext: decontextualize the output
"""
global autoais_model, autoais_tokenizer
if autoais_model is None:
logger.info("Loading AutoAIS model...")
autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, max_memory=get_max_memory(), device_map="auto", offload_folder="offload_nli")
autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL, use_fast=False)
logger.info(f"Running AutoAIS...")
def _format_document(doc):
"""Format document for AutoAIS."""
if "sent" in doc:
# QA-extracted docs
return "Title: %s\n%s" % (doc['title'], doc['sent'])
else:
return "Title: %s\n%s" % (doc['title'], doc['text'])
ais_scores = []
ais_scores_prec = []
sent_total = 0
sent_mcite = 0
sent_mcite_support = 0
sent_mcite_overcite = 0
autoais_log = []
report_items = []
oom_count = 0
for item in tqdm(data):
# Get sentences by using NLTK
if qampari:
sents = [item['question'] + " " + x.strip() for x in item['output'].rstrip().rstrip(".").rstrip(",").split(",")]
else:
sents = sent_tokenize(item['output'])
# remove 'sentences' that are just a stand-alone list indexer (e.g., "1.", "2.", "3.")
sents = [sent for sent in sents if not re.match(LIST_INDEXER_REGEX, sent)]
if len(sents) == 0:
continue
target_sents = [remove_citations(sent).strip() for sent in sents]
entail = 0
entail_prec = 0
total_citations = 0
for sent_id, sent in enumerate(sents):
target_sent = target_sents[sent_id] # Citation removed and (if opted for) decontextualized
joint_entail = -1 # Undecided
# Find references
ref = [int(r[1:])-1 for r in re.findall(r"\[\d+", sent)] # In text citation id starts from 1
logger.info(f"For `{sent}`, find citations {ref}")
if len(ref) == 0:
# No citations
joint_entail = 0
elif any([ref_id >= len(item['docs']) for ref_id in ref]):
# Citations out of range
joint_entail = 0
else:
if at_most_citations is not None:
ref = ref[:at_most_citations]
total_citations += len(ref)
joint_passage = '\n'.join([_format_document(item['docs'][psgs_id]) for psgs_id in ref])
# If not directly rejected by citation format error, calculate the recall score
if joint_entail == -1:
try:
joint_entail = _run_nli_autoais(joint_passage, target_sent)
except OutOfMemoryError:
oom_count += 1
logger.warning(f"CUDA out of memory error. Retrying with max_length=1024. OOM count: {oom_count}")
torch.cuda.empty_cache()
try:
joint_entail = _run_nli_autoais(joint_passage, target_sent, max_length=1024)
except OutOfMemoryError:
logger.error(f"CUDA out of memory error persists even with max_length=1024. Skipping this entailment check.")
joint_entail = 0
autoais_log.append({
"question": item['question'],
"output": item['output'],
"claim": sent,
"passage": [joint_passage],
"model_type": "NLI",
"model_output": joint_entail,
})
entail += joint_entail
if len(ref) > 1:
sent_mcite += 1
# calculate the precision score if applicable
if joint_entail and len(ref) > 1:
sent_mcite_support += 1
# Precision check: did the model cite any unnecessary documents?
for psgs_id in ref:
# condition A
passage = _format_document(item['docs'][psgs_id])
try:
nli_result = _run_nli_autoais(passage, target_sent)
except OutOfMemoryError:
oom_count += 1
logger.warning(f"CUDA out of memory error. Retrying with max_length=1024. OOM count: {oom_count}")
torch.cuda.empty_cache()
try:
nli_result = _run_nli_autoais(passage, target_sent, max_length=1024)
except OutOfMemoryError:
logger.error(f"CUDA out of memory error persists even with max_length=1024. Skipping this entailment check.")
nli_result = 0
# condition B
if not nli_result:
subset_exclude = copy.deepcopy(ref)
subset_exclude.remove(psgs_id)
passage = '\n'.join([_format_document(item['docs'][pid]) for pid in subset_exclude])
try:
nli_result = _run_nli_autoais(passage, target_sent)
except OutOfMemoryError:
oom_count += 1
logger.warning(f"CUDA out of memory error. Retrying with max_length=1024. OOM count: {oom_count}")
torch.cuda.empty_cache()
try:
nli_result = _run_nli_autoais(passage, target_sent, max_length=1024)
except OutOfMemoryError:
logger.error(f"CUDA out of memory error persists even with max_length=1024. Skipping this entailment check.")
nli_result = 0
if nli_result: # psgs_id is not necessary
sent_mcite_overcite += 1
else:
entail_prec += 1
else:
entail_prec += 1
else:
entail_prec += joint_entail
sent_total += len(sents)
docs_str = "\n*********\n".join([f"Document {i+1} Title: {doc['title']}\n\t{doc['text']}" for i, doc in enumerate(item["docs"])])
citation_rec = entail / len(sents)
citation_prec = entail_prec / total_citations if total_citations > 0 else 0 # len(sents))
ais_scores.append(citation_rec)
ais_scores_prec.append(citation_prec)
report_items.append({
"question": item["question"],
"output": item["output"],
"answer": item["answer"],
"claims": "\n".join(item["claims"]),
"docs": docs_str,
"cited_spans": item.get("cited_spans", ""),
"citation_rec": citation_rec,
"citation_prec": citation_prec,
"citation_f1": (2 * citation_rec * citation_prec) / (citation_rec + citation_prec) if citation_rec + citation_prec > 0 else 0
})
if sent_mcite > 0 and sent_mcite_support > 0:
print("Among all sentences, %.2f%% have multiple citations, among which %.2f%% are supported by the joint set, among which %.2f%% overcite." % (
100 * sent_mcite / sent_total,
100 * sent_mcite_support / sent_mcite,
100 * sent_mcite_overcite / sent_mcite_support
))
logger.info(f"Total CUDA out of memory errors encountered: {oom_count}")
return {
"citation_rec": 100 * np.mean(ais_scores),
"citation_prec": 100 * np.mean(ais_scores_prec),
"citation_f1": 100 * (2 * np.mean(ais_scores) * np.mean(ais_scores_prec) / (np.mean(ais_scores) + np.mean(ais_scores_prec)) if np.mean(ais_scores) + np.mean(ais_scores_prec) > 0 else 0),
"ais_scores": ais_scores,
"ais_scores_prec": ais_scores_prec,
"autoais_log": autoais_log,
"report_items": report_items,
"oom_count": oom_count
}
def compute_qampari_f1(data, cot=False):
prec = []
rec = []
rec_top5 = []
f1 = []
f1_top5 = []
num_preds = []
for item in data:
if cot:
if ":" in item['output']:
o = ':'.join(item['output'].split(":")[1:]) # try to separate the COT part and the answer list part.
else:
o = ""
else:
o = item['output']
preds = [normalize_answer(x.strip()) for x in o.rstrip().rstrip(".").rstrip(",").split(",")]
preds = [p for p in preds if len(p) > 0] # delete empty answers
num_preds.append(len(preds))
answers = [[normalize_answer(x) for x in ans] for ans in item['answers']]
flat_answers = [item for sublist in answers for item in sublist]
prec.append(sum([p in flat_answers for p in preds]) / len(preds) if len(preds) > 0 else 0)
rec.append(sum([any([x in preds for x in a]) for a in answers]) / len(answers))
rec_top5.append(min(5, sum([any([x in preds for x in a]) for a in answers])) / min(5, len(answers)))
if (prec[-1] + rec[-1]) == 0:
f1.append(0)
else:
f1.append(2 * prec[-1] * rec[-1] / (prec[-1] + rec[-1]))
if (prec[-1] + rec_top5[-1]) == 0:
f1_top5.append(0)
else:
f1_top5.append(2 * prec[-1] * rec_top5[-1] / (prec[-1] + rec_top5[-1]))
return {
"num_preds": np.mean(num_preds),
"qampari_prec": 100 * np.mean(prec),
"qampari_rec": 100 * np.mean(rec),
"qampari_rec_top5": 100 * np.mean(rec_top5),
"qampari_f1": 100 * np.mean(f1),
"qampari_f1_top5": 100 * np.mean(f1_top5),
}
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--f", type=str, required=True, help="Output file. Should have field `question`, `output`, (ROUGE) `answer`, \
(accuracy) `qa_pairs`, (AIS) `docs`")
parser.add_argument("--no_rouge", action="store_true", help="Do not evaluate ROUGE score")
parser.add_argument("--qa", action="store_true", help="Use the QA model")
parser.add_argument("--mauve", action="store_true", help="Use the mauve score model")
parser.add_argument("--citations", action="store_true", help="Evaluation with citation")
parser.add_argument("--at_most_citations", type=int, default=3, help="At most take this many documents (mostly for precision)")
parser.add_argument("--claims_nli", action="store_true", help="Use claims for ELI5")
parser.add_argument("--report", type=str, help="Generate an Excel report and save it to the specified path")
parser.add_argument("--batch_size", type=int, default=16, help="Batch size for NLI processing")
# QAMPARI
parser.add_argument("--cot", action="store_true", help="For QAMPARI, try to find colon and separate the COT and answer listing")
args = parser.parse_args()
with open(args.f) as f:
data_with_config = json.load(f)
data = data_with_config['data']
if "qampari" in args.f:
args.no_rouge = True
args.qa = False
args.mauve = False
args.decontext = False
qampari = True
else:
qampari = False
# Truncate by newline and remove on the fly search result
logger.warning("We remove all the pre/appended space/newlines and we truncate the answer by the first newline.")
logger.warning("We replace any on the fly search result to standard bracket citation format.")
for i in range(len(data)):
data[i]['output'] = data[i]['output'].strip().split("\n")[0]
data[i]['output'] = data[i]['output'].replace("<|im_end|>", "")
data[i]['output'] = re.sub(r"</s>", "", data[i]['output'])
data[i]['output'] = re.sub(r"<s>", "", data[i]['output'])
# Remove all citations for all non-AutoAIS evaluation
normalized_data = copy.deepcopy(data)
for i in range(len(normalized_data)):
normalized_data[i]['output'] = remove_citations(normalized_data[i]['output'])
result = {}
result['length'] = compute_len(normalized_data)
result['str_em'], result['str_hit'] = compute_str_em(normalized_data)
if qampari:
result.update(compute_qampari_f1(normalized_data, cot=args.cot))
if not args.no_rouge:
result['rougeLsum'] = compute_rouge(normalized_data)
if args.qa:
result.update(compute_qa(normalized_data))
if args.mauve:
result['mauve'] = compute_mauve(normalized_data)
if args.citations:
citation_results = compute_autoais(data, qampari=qampari, at_most_citations=args.at_most_citations)
# include everything except report_items and autoais_log, report_items is for Excel report
result.update({k: v for k, v in citation_results.items() if k not in ["report_items", "autoais_log", "ais_scores_prec", "ais_scores"]})
if args.claims_nli:
result["claims_nli"] = compute_claims(normalized_data, args.batch_size)
# Generate Excel report if requested
if args.report:
report_data = citation_results["report_items"]
write_results_to_excel(
report_data,
args.report,
wider_columns=['question', 'output', 'docs', 'claims'],
correctness_column=None # We don't have a correctness column in this case
)
print(f"Excel report saved to: {args.report}")
print(result)
with open(args.f + ".score", "w") as f:
json.dump(result, f, indent=4)
if __name__ == "__main__":
main()