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Abstract

Rapid data collection, spectral referencing, processing by time domain deconvolution, peak picking and editing,
and assignment of NMR spectra are necessary components of any efficient integrated system for protein NMR
structure analysis. We have developed a set of software tools designated AutoProc, AutoPeak, and AutoAssign,
which function together with the data processing and peak-picking programs NMRPipe and Sparky, to provide
an integrated software system for rapid analysis of protein backbone resonance assignments. In this paper we
demonstrate that these tools, together with high-sensitivity triple resonance NMR cryoprobes for data collection
and a Linux-based computer cluster architecture, can be combined to provide nearly complete backbone reso-
nance assignments and secondary structures (based on chemical shift data) for a 59-residue protein in less than
30 hours of data collection and processing time. In this optimum case of a small protein providing excellent
spectra, extensive backbone resonance assignments could also be obtained using less than 6 hours of data col-
lection and processing time. These results demonstrate the feasibility of high throughput triple resonance NMR
for determining resonance assignments and secondary structures of small proteins, and the potential for applying
NMR in large scale structural proteomics projects.

Abbreviations: BPTI – bovine pancreatic trypsin inhibitor; LP – linear prediction; FT – Fourier transform; S/N –
signal-to-noise ratio; FID – free induction decay

Introduction

Resonance assignments provide the basis for analysis
of protein structure and dynamics by NMR spectros-
copy [1–3]. The use of multidimensional triple reso-
nance NMR for determination of protein resonance

assignments [4–7] has become standard in many lab-
oratories. Indeed, for small proteins ( � 25 kDa) triple
resonance NMR data analysis is, in many cases, a
routine task. However, the processes of data collec-
tion, referencing, time domain deconvolution, orga-
nizing, and manual analysis of the spectral data still
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takes a significant amount of time and effort. Over the
last few years a number of laboratories have devel-
oped automatic or semiautomatic methods for NMR
data analysis [7, 8–13]. Although such software
greatly accelerates the process of going from high-
quality peak lists to resonance assignments, the data
collection, referencing, Fourier transformation, peak
picking, and peak list editing processes still constitute
the major portion of the time required for protein
structure determination.

Recent developments in cryogenic probe technol-
ogy for NMR spectroscopy [14, 15] provide signifi-
cant improvements in signal-to-noise ratios for
protein samples in aqueous buffered solutions, and
allow much shorter data collection times for most of
the triple resonance experiments designed for protein
resonance assignments. For example, Cowburn and
co-workers have demonstrated that all the data
required for analysis of backbone resonance assign-
ments of small proteins can be collected in just a few
days using triple resonance NMR cryoprobes [16].
However, high-throughput structure analysis requires
both rapid data collection and rapid and automated
NMR ‘data processing’. We include in the term ‘data
processing’ the several data reduction and organiza-
tional processes involved in converting raw time
domain multidimensional NMR data into properly
referenced peak lists suitable for analysis with auto-
mated resonance assignment and structure generation
programs.

The use of parallel and/or distributed computer
systems provides an important approach to reducing
the time required for ‘data processing’. Anticipating
these developments, some software packages for mul-
tidimensional Fourier transformation of NMR data,
like NMRPipe [17], have been designed for use with
distributed computing systems of many different
processor architectures. While most UNIX-based par-
allel systems run on very expensive hardware config-
urations, the Linux operating system provides a very
efficient and cheap platform for many scientific soft-
ware packages. The low cost of Linux workstations
and associated network and storage accessories
required for implementing an efficient distributed sys-
tem allows even modest academic laboratories to im-
plement such configurations for high-throughput
NMR data analysis.

In this study, we demonstrate the combined use of
triple resonance cryoprobes, efficient data collection
strategies, ‘data processing’ using a cluster of Linux-
based processors, and our newly developed AutoProc

and AutoPeak software in combination with the pro-
grams NMRPipe [17], Sparky [18], and AutoAssign
[9, 13], to provide rapid determination of protein res-
onance assignments and secondary structure. These
results provide a basis for considering high through-
put resonance assignments and secondary structure
analysis as a component of an integrated program in
structural proteomics [19].

Methods and materials

Uniformly 13C,15N-enriched BPTI was prepared as
described elsewhere [20]. This construct includes an
N-terminal methionine residue, resulting in a total of
59 amino acids. Triple resonance spectra for back-
bone resonance assignments were collected using a
Bruker AVANCE NMR spectrometer system
equipped with a triple resonance cryoprobe. The
NMR sample was maintained at 30 ± 0.1 °C, while
coil temperature was maintained at 30 K. Samples
were prepared for NMR measurements in 5-mm di-
ameter Shigemi NMR tubes using a sample volume
of 190 �l. The protein concentration was 0.9 mmol/L
at pH 5.8 in aqueous solvent containing 5% D2O,
20 mM sodium acetate, 25 mmol/L CaCl2, and 0.02%
NaN3.

Results and discussion

Data collection

The combination of cryoprobe and automated analy-
sis technologies can provide a robust approach for
rapid protein structure analysis by NMR. We demon-
strate this here using the canonical protein NMR test
sample, bovine pancreatic trypsin inhibitor (BPTI).
Although BPTI provides particularly nice NMR spec-
tra, similar quality data have been obtained using the
cryoprobe on other protein samples. Data collection
was carried out at 500 MHz in two different runs. The
key parameters for these data collection runs are sum-
marized in Table 1. For data collection I, six 3D
triple-resonance spectra were collected over 36 h. For
data collection II, the same six 3D spectra were col-
lected over 5 h. The primary aim of data collection II
was to explore the feasibility of recording the re-
quired NMR spectra in an unprecedented short period
of time, i.e. in less than six hours. To accomplish this
goal, we (i) recorded four of the six 3D data sets with
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only a single scan per acquired free induction decay
(FID), (ii) carefully optimized the sweep widths and
maximal evolution times in the indirect dimensions,
and (iii) employed unusually short relaxation delays
between scans, trading optimum signal-to-noise ratios
(S/N) for shorter data collection time requirements.

Cryoprobe performance

In order to document the performance of the Bruker
triple-resonance cryoprobe used in this work on an
aqueous biological sample, S/N ratios were measured
and compared with those obtained on the same 500-
MHz spectrometer system using a conventional tri-
ple-resonance probe. Using a standard 0.1% ethylben-
zene sample, the cryoprobe provided a S/N (200-Hz
noise region) of 3415 : 1, while the conventional
probe provided a S/N of 970 : 1. Using the 15N,13C
-enriched BPTI sample described in the Methods and
materials section, 3D HNcoCACB spectra were run
using identical collection parameters on the cryo-
probe and conventional probes. A comparison of the

HN-C projections of these two HNcoCACB spectra
is shown in Figure 1, together with a representative
trace through the spectrum. Analysis of cross peaks
throughout these spectra demonstrate a range of S/N
enhancements of 2.5 to 3.5, with an average value of
3.3. Accordingly, the triple-resonance cryoprobe mea-
surements can be carried out on aqueous protein
solutions at reasonable ionic strength using approxi-
mately 10-fold shorter data collection periods than the
corresponding experiments collected using a conven-
tional triple-resonance probe.

Automated referencing and spectral processing

Prior to Fourier transformation of the time domain
data, the NMR spectra were automatically referenced
using AutoProc. Details of the algorthithms of Auto-
Proc and their implementations will be presented
elsewhere. The AutoProc software also generates
NMRPipe [17] processing scripts for multidimen-
sional Fourier transformation based on user-specified
phasing, window functions and baseline correction.

Table 1. Triple resonance data sets collected to explore various high-throughput resonance assignment strategies.

15N-HSQC HNcoCA HNCO HNCA HNCACB HNcoCACB HNcaCO

Data Collection I

No. of points

Collected 1024, 128 1024, 20, 40 1024, 20, 40 1024, 20, 40 1024, 20, 40 1024, 20, 40 1024, 20, 40

After LP 1024, 256 1024, 40, 80 1024, 40, 80 1024, 40, 80 1024, 40, 80 1024, 40, 80 1024, 40, 80

After zero filling 1024, 256 1024, 64, 128 1024, 64, 128 1024, 64, 128 1024, 64, 128 1024, 64, 128 1024, 64, 128

No. of scans 1 2 2 2 8 8 8

Spectral width

(�1, �2,

�3; Hz)

6720, 1613 6720, 1613,

4032

6720, 1613,

2777

6720, 1613,

4032

6720, 1613,

9433

6720, 1613,

9433

6720, 1613,

2777

Recycle delay (s)a 1.15 1.05 1.05 1.05 1.15 1.15 1.05

Collection time (h) 0.1 2.4 2.4 2.4 10 10 9.3

Data Collection II

No. of points

Collected 1024, 128 1024, 20, 26 1024, 20, 20 1024, 20, 26 1024, 20, 60 1024, 20, 60 1024, 20, 20

After LP 1024, 256 1024, 40, 52 1024, 40, 40 1024, 40, 52 1024, 40, 120 1024, 40, 120 1024, 40, 40

After zero filling 1024, 256 1024, 64, 64 1024, 64, 64 1024, 64, 64 1024, 64, 128 1024, 64, 128 1024, 64, 64

No. of scans 1 1 1 1 1 1 4

Spectral width

(�1, �2,

�3; Hz)

6720, 1613 6720, 1613,

4032

6720, 1613,

2777

6720, 1613,

4032

6720, 1613,

9433

6720, 1613,

9433

6720, 1613,

2777

Recycle delay (s)a 1.15 0.75 0.75 0.75 0.75 0.75 0.75

Collectiont time (h) 0.1 0.5 0.4 0.5 1.0 1.3 1.7

a Recycle day � acquisition time plus interincrement delay.
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These NMRPipe scripts are optimized for parallel
processing on a Linux architecture. In this particular
study, all data were linear predicted, zero filled, and
Fourier transformed using parallel processing meth-
ods on our Linux-based cluster of 44 Pentium III
CPUs. The total processing time for all six triple-
resonance spectra described in Table 1 was about 1 h.
This corresponds to an average of about 10 min for
each 3D spectrum (including linear prediction). De-
tails of hardware and software configurations of our
Pentium III PC cluster for parallel NMR processing
are available upon request (guy@cabm.rutgers.edu).

Digital solvent signal suppression [21], linear pre-
diction [22, 23] to double the number of points in all
the indirect dimensions, shifted (0.4�) sine-bell win-
dow functions, and zero filling were applied to these

data. The use of linear prediction greatly improves the
resolution in overlapped peaks, allowing the peak
picking and filtering methods described below to bet-
ter identify peak frequencies. Polynomial baseline
corrections of 4th order were also applied in all the
indirect dimensions after Fourier transformation. The
general use of baseline correction improves the qual-
ity of the 2D projections required for the peak filter-
ing approach described below. Once all of the data
were Fourier transformed, several 2D projections of
these 3D spectra were generated and used to evaluate
their overall quality. These 2D projections served as
filters for the peak editing software, AutoPeak.

Figure 1. Comparison of skyline projections of HNcoCACB spectra recorded for 0.9 mmol/L 15N,13C-enriched BPTI in solutions containing
20 mmol/L NaAc, 25 mmol/L CaCl2, and .02% NaN3 at pH 5.8 and 30 °C. These 3D spectra were each collected at 500 MHz over a 1.3-h
period (data collection parameters listed in Table 1, data collection II) using either (A) a conventional triple-resonance probe or (B) a triple-
resonance cryoprobe. Cross-sections through these projections demonstrate a S/N enhancement of � 3 for the cryoprobe compared with the
conventional probe.
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Automated peak list editing

Peak-picking and editing were carried out in an auto-
mated manner using Sparky software [18] for peak-
picking and AutoPeak software for peak list editing.
In this study, we first performed an initial peak pick-
ing at low intensity level (0.9 times the heuristic
white noise level) over each of the 3D spectra using
the 15N–H N restricted peak picking feature of the
program Sparky [18]. This process provides a peak
list containing only peaks of the multidimensional
spectra that match (e.g. within tolerances of
�N � ±0.2 ppm, �HN � ±0.02 ppm) in their 15N and
HN resonance frequencies to some peak in a high-
resolution 15N–HSQC spectrum that has been care-
fully manually picked. We refer to these 15N–HN

peak frequencies as the ‘N–H root peak list’ [9].
In the second step, we further filter this ‘N–H fil-

tered’ 3D peak list using a ‘C–H root peak list’, gen-
erated by a similar manual interactive analysis of
appropriate 2D 13C–HN projections of 3D HNCACB
and/or 3D HNcoCACB spectra. In principle, this
‘C–H root peak list’ contains the resonances of every
peak in the projections of these 3D HNCACB and 3D
HNcoCACB spectra. This approach was sufficiently
robust to handle most cases of peak overlap in these
projections. After this filtering process, each peak in
the final peak list matches 15N and HN peak frequen-
cies derived from the 15N–HN projection and 13C
peak frequencies derived from the 13C�/�-HN projec-
tions. The probability of an artifact peak in the 3D
spectra passing this filtering process is very low. On
the other hand, the otherwise significant time required
for editing the 3D peak lists is greatly reduced be-
cause only two or three 2D spectra (or 2D projections
of 3D spectra) require manual editing of automati-
cally generated peak lists. The manual editing of these
2D spectra can be done in tens of minutes. Of course,
the efficiency and reliability of this peak filtering ap-
proach depends strongly on the quality of the spectra
and on the quality of the resulting ‘root peak lists’
used as filters.

In order to generate better root peak lists, we ex-
plored different approaches for generating the re-
quired 2D projections of 3D HNCACB and 3D
HNcoCACB spectra. In particular, we evaluated both
skyline and sum 2D projections of these 3D spectra.
The skyline projection is generated by computing the
profile of 3D peak intensities onto a selected 2D
plane; the sum projection is generated by computing
a projection of the sum of peak intensities onto a 2D

plane. The differences between these methods was
limited to only a few peaks in some spectra. How-
ever, AutoAssign generally provided better results for
the peak lists filtered using the sum projection as the
basis for the ‘root peak list’.

As one might expect, accurate and consistent ref-
erencing of spectra is critical for the performance of
these peak editing methods. A relative shift between
spectra provides almost empty filtered peak lists for
normal filtering tolerances, while inaccuracy in the
absolute referencing of the whole set of spectra can
result in amino acid typing errors in AutoAssign. For
this reason, accurate and consistent spectral referenc-
ing provided by the AutoProc process is critical for
proper performance of the AutoPeak editing process.
In addition, AutoPeak utilizes algorithms for inter-
spectral registration of peak lists, applying small glo-
bal adjustments to the shift lists to optimally align
them with one another, prior to peak picking and peak
list editing.

Strategies of triple resonance data collection

We also explored several different strategies of data
collection and processing in order to evaluate ap-
proaches for reducing data collection time require-
ments. AutoPeak provides automatic generation of
peak lists for specific triple-resonance experiments
required for backbone assignments from the encoded
information of other experiments. This allows for data
collection strategies using fewer than the seven data
sets summarized in Table 1. For example, it is rela-
tively easy to extract the peaks corresponding to a 3D
HNCA spectrum from a 3D HNCACB spectrum col-
lected with delays tuned to provide different signs
(i.e., positive or negative intensities) for C� and C�

resonances (i.e. C�/C� phase-discriminated experi-
ments; [24, 25]). The 3D HNCACB and 3D HNco-
CACB spectra used in this study were both collected
with such phase discrimination of C� and C� cross
peaks. The combinations of strategies tested using
various subsets of the six triple-resonance experi-
ments of Table 1 are summarized in Table 2. Repre-
sentative sequential connectivity maps generated
from these automated analyses are shown in Figure 2.
A complete summary of results for various analysis
strategies used with both data collection strategies is
presented in Table 3.

In all the data analysis strategies that we explored,
assignments of atoms in residues around Cys-14 and
Cys-38 were incomplete. This is attributable to broad-
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ening of many resonances belonging to amino acids
in these polypeptide segments resulting from dynamic
conformational exchange between low-energy con-
formers of the Cys-14–Cys-38 disulfide bond
[26, 27], and the high density of proline residues in
polypeptide segment Pro-8 to Pro-13. Assignments in
this region of the protein are difficult to make even
when using fully manual analysis methods.

Water suppression

Although the quality of these spectra collected using
the Bruker triple resonance cryoprobe was quite good,

we did not obtain excellent water suppression in most
of the data sets from Data Collection II involving
single scan experiments. Because of this, we were
unable to observe cross peaks associated with residue
glycine-37 [�(HN) � 4.36 ppm]. In order to evaluate
the performance of our methods on spectra collected
with better water suppression, we compared the per-
formance of automated analysis with and without
manual insertion of the peaks corresponding to
Gly-37 triple resonance correlations that were miss-
ing in the original data. The insertion of these addi-
tional peaks in the input peak lists provided one to
six more backbone spin system assignments than the

Table 2. Different strategies used for generating the peak lists required for AutoAssign analysis.

Data analysis strategy A B C D

HSQC HSQC HSQC HSQC HSQC

HNCO HNCO HNCO HNCO HNCO

HNCA a a HNCA HNCA

HNcoCA b c HNcoCA HNcoCA

HNCACB HNCACB HNCACB HNCACB HNCACB

HNcoCACB HNcoCACB HNcoCACB HNcoCACB HNcoCACB

HNcaCO HNcaCO

Collection I (h) 22.5 22.5 36.6 27.3

Collection II (h) 2.8 2.8 5.5 3.8

LP/FT (h) 1 1 1 1

Peak picking and editing (h) 1 1 1 1

Total Time I (h) 24.5 24.5 38.6 29.3

Total Time II (h) 4.8 4.8 7.5 5.8

a HNCA generated from a C�/C� phase-discriminated HNCACB spectrum.
b HNcoCA data is generated from a C�/C� phase-discriminated HNCACB spectrum as described above in footnote a together with HNco-
CACB data. This strategy does not require recording a HNcoCACB spectrum with C�/C� phase-discrimination.
c HNcoCA generated from a C�/C� phase-discriminated HNcoCACB spectrum.

Table 3. Numbers of backbone spin systems assigneda and numbers of spin system assignment errorsb using the AutoProc/NMRPipe/Sparky/
AutoPeak/AutoAssign process with various strategies and data sets

Strategy A B C C + G37 D D + G37

Data collection I
Total time (h) 24.5 24.5 38.6 38.6 29.5 29.5

Sum projection 43(4) 39(1) 50(0) 53(0) 50(0) 53(0)

Skyline projection 38(3) 36(0) 48(0) 50(0) 48(0) 50(0)

Data collection II
Total time (h) 4.8 4.8 7.5 7.5 5.8 5.8

Sum projection 36(4) 38(5) 45(1) 46(0) 45(1) 46(0)

Skyline projection 40(3) 36(1) 46(3) 50(0) 46(3) 50(0)

a A backbone spin system is counted as ‘assigned’ if an assignment is reported for the 13C� resonance.
b Number of spin system assignment errors reported in parentheses. Deviations of C� or 15N chemical shift larger than 0.2 ppm and devia-
tions of HN chemical shift larger than 0.02 ppm with respect the assignments reported in BMRB (entry BMRB-4968) are considered errors
in the overall spin system assignment.
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original data (compare results of strategies C and
C+G37, and D and D+G37 in Table 3).

Comparison of rapid data collection and processing
strategies for automated analysis of backbone
resonance assignments with AutoAssign

As shown in Table 3, some of the simpler data col-
lection strategies that we evaluated provided reason-
ably extensive backbone assignments with relatively
short (3–23 h) data collection periods. Successful
AutoAssign analysis of the most minimal of these
subsets of experiments (i.e. 2D HSQC, 3D HNCO,
3D HNCACB and 3D HNcoCACB) requires excep-
tionally complete and high-quality triple-resonance
data. However, for this BPTI sample, even this very
compact data collection strategy was reasonably suc-
cessful. For example, using data collection strategies
A and B, extensive resonance assignments with rela-
tively few errors were obtained automatically in about
5 h (Table 3). Previous efforts in automated analysis
of resonance assignments using similar data for BPTI

required several days for Fourier transformation, peak
picking and peak editing in order to provide the input
files required for AutoAssign analysis, and resulted in
backbone spin system assignments for only 46 amino
acids [13].

Strategies A and B of Tables 2 and 3 are
approaches in which the C� and C� resonances are
distinguished on the basis of C�/C� sign information
(i.e. positive or negative peak intensities) in the
HNCACB and HNcoCACB spectra, providing for
shorter overall data collection times. In both Strate-
gies A and B, HNCA-type data, required by AutoAs-
sign in order to identify C� resonances, are generated
from a C�/C� phase-discriminated HNCACB
spectrum. In strategy A, the HNcoCA input file, used
by AutoAssign to identify sequential Ci

� → Hi+1
N

connections, is generated with AutoPeak by compar-
ing the HNCA data with HNcoCACB data recorded
without C�/C� phase discrimination, thus identifying
the sequential (HNcoCA-type) peaks in the HNCA
data set. In strategy B, the required HNcoCA data are
generated with AutoPeak by simply removing C� cor-

Figure 2. (A) Triple-resonance connectivity map and Wishart plot for the best results obtained with the AutoProc/NMRPipe/Sparky/Auto-
Peak/AutoAssign process using data collection I parameters and Strategy D+G37 with sum projection to generate ‘C–H root peak list’. The
total time required for data collection and processing was � 30 h. Also shown is a comparison with the secondary structure calculated from
the 3D structure of BPTI deposited in the Protein Data Bank (PDB code 5pti). (B) AutoAssign triple-resonance connectivity map and Wishart
plot for the best results using data collection II parameters and Strategy D+G37 with skyline projection to generate ‘C–H root peak list’. The
total time required for data collection and processing was � 6 h.
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relations (i.e. negative peaks) from a C�/C� phase-
discriminated HNcoCACB spectrum.

In comparing these data collection/analysis strate-
gies (Table 3), Strategy A provides more backbone
spin system assignments but also more spin system
assignment errors than strategy B. This behaviour can
be explained by the fact that, in strategy A, both
HNCA and HNcoCA peak lists are generated from a
single common spectrum (i.e. by appropiate editing
of the 3D HNCACB data), providing higher consis-
tency for interspectrum matching and therefore, in
this case, more resonance assignments. Strategy B, on
the other hand, uses both the C�/C� phase-discrimi-
nated 3D HNCACB and 3D HNcoCACB spectra to
generate the required 3D HNCA and 3D HNcoCA
peak lists, making use of more actual experimental
information and providing more accurate results. The
most reliable strategies are the ones that use actual
data from HNCA and HNcoCA spectra (i.e. strategies
C and D). In our view, strategies C and D are prefer-
able, as collecting the actual 3D HNCA and 3D
HNcoCA spectra, which are relatively high-sensitiv-
ity experiments, does not require a large increase in
the total data collection time. In addition, using
strategies C and D ensures optimum sensitivity for
detecting C� resonances (using HNCA and HNcoCA
spectra) and allows the HNCACB and HNcoCACB
data collection parameters to be tuned to optimize C�

resonance intensities.
For this particular sample, the establishment of

intraresidue C�–C� connectivities using 3D HNcaCO
data did not provide more accurate or complete reso-
nance assignments. This is a consequence of the rela-
tive completeness of the other spectra. As the
HNcaCO is the least sensitive of the spectra listed in
Table 1, it is noteworthy that at least in some cases
the most time consuming of the basic spectra can be
omitted without severely compromising the accuracy
or completeness of the results. In fact, the only im-
provement observed for addition of HNcaCO peak
lists was for strategy C+G37 in Data Collection II
runs (Table 3), providing one additional spin system
assignment for a 25% (ca. 1.5 h.) increase in data
collection time.

Automated analysis of protein secondary structure

Figure 2A shows the Wishart plot [28] characterizing
backbone secondary structure from resonance assign-
ments obtained with AutoAssign using data collec-
tion I spectra and strategy D � G37. This secondary

structure analysis based on C� and C� chemical shift
data are compared with the actual secondary structure
reported for a crystal structure of BPTI (Protein Data
Bank, entry 5pti). These results demonstrate auto-
mated processing and analysis of NMR data collected
in about 28 h and processed in about 2 h to provide
extensive backbone resonance assignments and
secondary structure for this small protein. Similar res-
onance assignment and secondary structure accuracy
(shown in Figure 2B) was obtained using data collec-
tion II parameters and strategy D � G37, requiring
about 4 h of data collection and about 2 h of data
processing and analysis. Successful and rapid analy-
sis was also achieved without artificially supplement-
ing the data sets with the obscured resonances of
residue Gly-37.

Conclusions and future prospects

We demonstrate in this study the automatic determi-
nation of backbone resonance assignments and
secondary structure for a 59 amino acid protein in less
than 2 days of data collection, processing, peak pick-
ing, peak list editing, and analysis time. This accel-
eration relies on the high sensitivity afforded by a
triple-resonance cryogenic probe, and is enabled by
the integration of software packages AutoProc, Auto-
Peak, NMRPipe [17], Sparky [18], and AutoAssign
[9, 13]. In particular, the AutoPeak software provides
flexibility for using various combinations of triple-
resonance spectra in AutoAssign analysis. In this
favorable case, extensive backbone resonance assign-
ments and reliable identification of secondary struc-
ture was completed using less than 6 h of data collec-
tion, processing, peak picking, and analysis time. The
use of pulse sequences designed for the short mea-
surement times and small number of scans per FID
made feasible by cryoprobes, such as reduced-dimen-
sionality NMR experiments [e.g. see References 29
and 30], as well as the use of shorter recycling delays
and numbers of points in indirect dimensions, can
provide further reductions in data collection times.
Hardware and pulse sequence design providing im-
provements in water suppression when using cryo-
genic probes, especially for data sets collected with
only one scan per increment, will be critical for these
applications. Finally, this study demonstrates the fea-
sibility of high-throughput analysis of small protein
structures using NMR, and the potential for applying
NMR in large-scale structural proteomics projects.

100



Acknowledgements

The AutoProc, AutoPeak, and AutoAssign software
packages described in this paper are available to non-
commercial users at (www-nmr.cabm.rutgers.edu).
This work was supported by grants from the National
Institute of Health (P50 GM62413 and R01
GM56233), The New Jersey Commission on Science
and Technology (99-2042-007-13), the Spanish Sci-
ence and Education Ministry (postdoctoral Fellow-
ship EX-29179910 to DM) and the National Science
Foundation (postdoctoral Fellowship DBI-9974200 to
HNBM).

References

1. Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids,
Wiley, New York.

2. Wüthrich, K. (1995) Acta. Cryst. D51, 249–270.
3. Clore, G. M., and Gronenborn, A. M. (1991) Science 252,

1390–1399.
4. Montelione, G. T., and Wagner, G. (1990) J. Magn. Reson.

87, 183–188.
5. Ikura, M., Kay, L. E., and Bax, A. (1990) Biochemistry 29,

4659–4667.
6. Kay, L. E. (1995) Prog. Biophys. Mol. Biol. 63, 277–299.
7. Montelione, G. T., Rios, C. B., Swapna, G. V. T., and Zim-

merman, D. E. (1999) Biol. Magn. Reson. 17, 81–130.
8. Zimmerman, D. E., Kulikowski, C. A., Wang, L. L., Lyons,

B. A., and Montelione, G. T. (1994) J. Biomol. NMR 3,
241–256.

9. Zimmerman, D. E., Kulikowski, C. A., Feng, W. et al. (1997)
J. Mol. Biol. 269, 592–610.

10. Leutner, M., Gschwind, R. M., Liermann, J., Schwarz, C.,
Gemmecker, G., and Kessler, H. (1998) J. Biomol. NMR 11,
31–43.

11. Güntert, P., Salzmann, M., Braun, D., and Wüthrich, K.
(2000) J. Biomol. NMR 18, 129–137.

12. Moseley, H. N. B., and Montelione, G. T. (1999) Curr. Opin.
Struct. Biol. 9, 635–642.

13. Moseley, H. N. B., Monleón, D., and Montelione, G. T.
(2001) Meth. Enzymol. 339, 91–108.

14. Styles, P., and Soffe, N. F. (1984) J. Magn. Reson. 60,
397–402.

15. Marek, D. (1993) US Patent 5,247,256. RF Receiver Coil Ar-
rangement for NMR Spectrometers.

16. Goger, M., McDonnell, J., and Cowburn, D. (2000) In: Ab-
stract Book, 41st Experimental NMR Conference, Asilomar,
CA, pp. 267.

17. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J.,
and Bax, A. (1995) J. Biomol. NMR 6, 277–293.

18. Goddard, T. D., and Kneller, D. G. (1999) SPARKY 3, Uni-
versity of California, San Francisco.

19. Montelione, G. T., Zheng, D., Huang, Y. J., Gunsalus, K. C.,
and Szyperski, T. A. (2000) Nat. Struct. Biol. 7, 982–985.

20. Jansson, M., Li, Y. C., Jendeberg, L., Anderson, S., Mon-
telione, G. T., and Nilsson, B. (1996) J. Biomol. NMR 7,
131–141.

21. Marion, D., Ikura, M., and Bax, A. (1989) J. Magn. Reson.
84, 425–430.

22. Barkhuijsen, H., De Beer, R., Bovée, W. M. M. J., and Van
Ormondt, D. (1985) J. Magn. Reson. 61, 465–481.

23. Zhu, G., and Bax, A. (1992) J. Magn. Reson. 98, 192–199.
24. Grzesiek, S., and Bax, A. (1993) J. Biomol. NMR 3, 185–204.
25. Rios, C. B., Feng, W., Tashiro, M., Shang, Z., and Mon-

telione, G. T. (1996) J. Biomol. NMR 8, 345–350.
26. Otting, G., Liepinsh, E., and Wüthrich, K. (1993) Biochem-

istry 32, 3571–3582.
27. Szyperski, T. A., Luginbühl, P., Otting, G., Güntert, P., and

Wüthrich, K. (1993) J. Biomol. NMR 3, 151–164.
28. Wishart, D. S., and Sykes, B. D. (1994) J. Biomol. NMR 4,

171–180.
29. Szyperski, T., Wider, G., Bushweller, J. H., and Wüthrich, K.

(1993) J. Am. Chem. Soc. 118, 9307–9308.
30. Szyperski, T., Banecki, B., Braun, D., and Glaser, R. W.

(1998) J. Biomol. NMR 12, 25–37.

101

http://www-nmr.cabm.rutgers.edu

