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An expert system for determining resonance assignments from NMR
spectra of proteins is described. Given the amino acid sequence, a two-
dimensional 15N-1H heteronuclear correlation spectrum and seven to
eight three-dimensional triple-resonance NMR spectra for seven proteins,
AUTOASSIGN obtained an average of 98% of sequence-speci®c spin-sys-
tem assignments with an error rate of less than 0.5%. Execution times on
a Sparc 10 workstation varied from 16 seconds for smaller proteins with
simple spectra to one to nine minutes for medium size proteins exhibiting
numerous extra spin systems attributed to conformational isomerization.
AUTOASSIGN combines symbolic constraint satisfaction methods with a
domain-speci®c knowledge base to exploit the logical structure of the
sequential assignment problem, the speci®c features of the various NMR
experiments, and the expected chemical shift frequencies of different
amino acids. The current implementation specializes in the analysis of
data derived from the most sensitive of the currently available triple-
resonance experiments. Potential extensions of the system for analysis of
additional types of protein NMR data are also discussed.
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Introduction

Resonance assignments form the basis for analy-
sis of protein structure and dynamics by NMR
(WuÈ thrich, 1986) and their determination rep-
resents a primary bottleneck in protein solution
structure analysis. In many cases, the sequence-

speci®c assignment of backbone resonances is suf®-
cient to allow immediate interpretation of chemical
shift, NOESY, and scalar coupling data in terms of
the protein's secondary structure and chain fold.
The introduction of multi-dimensional triple-reson-
ance NMR (Montelione & Wagner, 1989, 1990;
Ikura et al., 1990; Kay et al., 1990) has dramatically
improved the speed and reliability of the protein
assignment process. Interpretation of these triple-
resonance data is greatly facilitated by computer-
assisted analysis (Zimmerman et al., 1993, 1994;
Friedrichs et al., 1994; Hare & Prestergard, 1994;
Meadows et al., 1994; Olsen & Markley, 1994;
Morelle et al., 1995; Zimmerman & Montelione,
1995; Bartels et al., 1996). AUTOASSIGN{
(Zimmerman et al., 1993, 1994) is a prototype
expert system that determines backbone 15N,
13C, and 1H and side-chain 13Cb resonance
assignments from a set of three-dimensional
triple-resonance protein NMR spectra in con-
junction with a two-dimensional 1H-15N hetero-
nuclear correlation spectrum. The software

Abbreviations used: AI, arti®cial intelligence; Csp A,
major cold shock protein A; FGF-2, human basic
®broblast growth factor; GS, a generic amino acid
spin-system object derived from NMR spectral data;
NMR, nuclear magnetic resonance; NOESY, nuclear
Overhauser spectroscopy; NS-1, in¯uenza A virus
non-structural protein 1; RNase A, ribonuclease A; SS,
sequence-speci®c spin-system object corresponding to an
amino acid residue in the protein sequence; p.p.m.,
parts per million; 2D, 3D, two and three-dimensional.
{ AUTOASSIGN and the input peak lists used for the

results summarized in this paper are available by
request. The software is implemented in the Allegro
Common Lisp Object System (CLOS) and requires a lisp
compiler (available from Franz Inc.) for execution.
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utilizes many of the analytical processes em-
ployed by NMR spectroscopists, including con-
straint-based reasoning (Fox, 1986; Nadel, 1986;
Kumar, 1992) and domain-speci®c knowledge-
based methods, exploiting known characteristics
of the speci®c NMR experiments and unique
features of amino acids in the sequence.

In this paper we report the performance of
AUTOASSIGN on seven triple-resonance NMR
data sets. These proteins contain between 69 and
154 amino acid residues and the spectra vary
widely with respect to completeness, resolution,
degeneracy, and noise perturbations. With these
data, approximate execution times{ varied from
16 seconds to nine minutes on a Sun Sparc 10 work-
station, depending on the size of the protein, the
quality of the spectra, the number of spin systems
present in excess of the number expected from the
protein sequence, and other more general measures
of complexity of the interpretation. For proteins
that yield reasonably good quality triple-resonance
NMR data sets, AUTOASSIGN provides almost
complete automated analysis of backbone reson-
ance assignments in minutes, reducing the analysis
process to the 7 to 21 days of NMR instrument time
needed for recording the requisite data. For poorer
quality or incomplete data sets, AUTOASSIGN pro-
vides partial assignments along with interactive
tools to support further exploratory analysis.

Results

Overview of the problem-solving strategies
and experimental input

Figure 1 summarizes the experimental NMR
data used as standard input for AUTOASSIGN.
The 15N-HN resonance frequencies of cross-peaks
detected in these various spectra are used to
de®ne groups of cross-peaks associated with
common amide N-H atoms. Situations in which
15N-HN cross-peaks of two or more amino acid
residues overlap in these spectra are handled
specially. Although the term ``spin system'' can
be used most generally to refer to any set of
atoms that interact through a de®ned set of nu-
clear magnetic interactions, in this paper we use
it to refer speci®cally to scalar-coupled heteronuc-
lear spin systems associated with speci®c N-H
sites in the protein sequence. A generic spin sys-
tem (GS) is one that has been identi®ed from the
NMR data but not yet assigned to a speci®c site
in the amino acid sequence. The root of each GS
is de®ned by its backbone amide 15N-HN reson-
ance frequencies.

In addition to these root frequencies, each GS
has two lists of designated 13C and 1H chemical

shifts, derived from triple-resonance experiments
that detect interactions of additional nuclei with
the amide N-H group. Four of these (i.e. H(CA)
(CO)NH, CA(CO)NH, CBCA(CO)NH, and HNCO)
are considered ``sequential'' triple-resonance exper-
iments, as they correlate Ha, Ca, Cb, or C0 nuclei of
residue (i ÿ 1) with the backbone N-H atoms of
residue i. Complementary to these, four ``intra-
residue'' experiments (i.e. H(CA)NH, CANH,
CBCANH, and HN(CA)CO) detect interactions of
the Ha, Ca, Cb, or C0 nuclei of residue i with its

Figure 1. Schematic representation of experimental
input to AUTOASSIGN. Each NMR experiment used in
creating input for AUTOASSIGN is depicted as a non-
directed graph whose edges re¯ect the transfer of mag-
netization through the participating nuclei. Those nuclei
that occur along a given path but that are not detected
in a given experiment are shown in parentheses. Peak-
picked 2D 15N-HN heteronuclear correlation data (a) de-
®ne the backbone amide resonances used to identify the
roots of generic spin systems (GSs). Experiments (b)
through (e) correlate the Ha, Ca, Cb, and C0 frequencies
of residue i ÿ 1 with the 15N-HN frequencies of residue i
and are used to de®ne CO-ladders. Experiments (f)
through (i) correlate the Ha, Ca, Cb, and C0 frequencies
of residue i with its own 15N-HN frequencies and are
used to de®ne CA-ladders. With the exception of FGF-2,
experiments (a) through (h) were collected for all of the
proteins tested. For the RNase A data sets, HNCACO
data (i) were also collected. For FGF-2, experiments
equivalent to (a) and (d) through (h) were carried out.
In addition, for the FGF-2 data manual analysis was
used to extract Ca cross-peaks from a CBCA(CO)NH-
type spectrum and Ha cross-peaks from an HBHA
(CO)NH spectrum, and a separate pre-processing mod-
ule was used to infer intraresidue C0 resonances from an
HCACO spectrum. Simulated peak lists corresponding
to data that would be provided by experiments (b), (c),
and (i) were thus de®ned for FGF-2 and included in the
input for AUTOASSIGN.

{ Execution times reported here are elapsed real times
for runs carried out on a Sun Sparc 10 workstation and
varied depending on the workstation's work load.
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own backbone amide N-H atoms{. Adjacency re-
lations between GSs are inferred by matching the
designated intraresidue shifts of one GS to the
sequential shifts of another.

There is an important distinction between the
designated shifts of a GS and the many cross-
peaks that may be associated with the correspond-
ing N-H root, since cross-peaks from multiple ex-
periments may imply several candidate frequencies
for a given resonance. A designated chemical shift
is a single numerical value that is assigned as that
atom's resonance frequency. To emphasize this dis-
tinction, the lists of designated intraresidue and
sequential chemical shifts associated with each N-
H root are referred to as the CA-ladder and CO-
ladder, respectively, of the GS.

The software can be run interactively or in
``batch mode''. Figure 2 shows a schematic over-
view of AUTOASSIGN's default execution se-
quence when run in batch mode. First, a set of

initialization routines (top of Figure 2) is executed
to process the input ®les and create AUTOAS-
SIGN's internal representations. Unless otherwise
directed by the user, the software next enters a se-
quence of stages of ``constraint-based matching'',
which progressively relax or otherwise rede®ne the
criteria used to designate chemical shifts and estab-
lish sequential matches between the CO and CA-
ladders. In each of these stages, AUTOASSIGN be-
gins by initializing or rede®ning the currently de-
signated chemical shifts. The designated chemical
shifts are then used to establish iteratively the best
matches between the CO and CA-ladders; matches
that can be con®rmed as the ``best possible'' are es-
tablished as sequential links between GSs. Any
constraints entailed by these links are then propa-
gated to establish sequence-speci®c assignments or
further constrain the remaining possible matches.
Although the actual methods used to designate
shifts and establish links vary depending on the
particular stage of analysis, the basic strategy of
designating chemical shifts followed by iterative
sequential matching and constraint propagation is
common to all stages, and is abstractly depicted in
Figure 2 as a Constraint-based Match Cycle.

Figure 2. Schematic overview of AUTOASSIGN's default execution sequence. Five sequential stages of analysis (see
the text) follow the initialization routines that process the input ®les and set up AUTOASSIGN's internal represen-
tations. Depending on the execution stage, different methods and/or criteria are used to designate chemical shifts
and establish sequential links between spin systems in the constraint-based match cycle.

{ Sequential cross-peaks are also observed in these
``intraresidue'' triple-resonance spectra (Montelione &
Wagner, 1989, 1990; Ikura et al., 1990), but can be
identi®ed through comparisons with the corresponding
``sequential'' triple-resonance data.
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In the ®rst stage of analysis (Make-Strongest-
Matches), only those chemical shifts that can be un-
ambiguously inferred are designated on ladders
and only those ladders having complete speci®ca-
tions participate in constraint-based matching. The
second stage of matching (Allow-Degenerate-
Shifts) re®nes some of the incompletely speci®ed
ladders and allows matching of the remaining un-
matched (and possibly less complete) ladders. The
third stage (Extend-Assigned-Segments) uses the
currently established assignments and links to
guide the speci®cation of incompletely designated
ladders, and focuses on extending the currently as-
signed stretches of the sequence. The fourth stage
of constraint-based matching is used only in data
sets involving extraneous GSs; i.e. data sets in
which many more GSs are identi®ed in the spectra
than are expected from the amino acid sequence.
In these cases, the weakest GSs (in terms of cross-
peak intensities) are initially set aside. Stage 4
(Match-Weaker-Spin-Systems) then re®nes the de-
signated ladders of these GSs and reinstates them
in the general pool for another round of constraint-
based matching. The ®nal stage (Complete-Assign-
ments) examines the currently designated chemical
shifts and sequential assignments for possible dis-
crepancies, making corrections and re®nements
where possible, and concludes with a ®nal cycle of
constraint-based matching.

Figure 3 shows the X-windows interface im-
plemented in Tk/Tcl (Ousterhout, 1993). The de-
fault stages of execution de®ne entry points to the
constraint-based match routines corresponding to
the numbered boxes in Figure 2, and are provided
as options in the Assignment Tools submenu of
Figure 3. Additional tools are also provided that
allow the user interactively to designate chemical
shifts, establish sequential assignments and/or
links, search for matches to arbitrarily selected lad-
ders, and provide statistical analyses of AUTOAS-
SIGN results. Although the software can be run
interactively or in fully automated mode, the re-
sults described here were obtained without user in-
tervention, except where speci®cally indicated.

AUTOASSIGN was developed and tested using
triple-resonance data sets obtained for ®ve dis-
tinctly different proteins: the Z domain of staphylo-
coccal nuclease protein A (7.5 kDa: Lyons et al.,
1993; Tashiro et al., unpublished results), the
single-stranded-RNA-binding cold-shock protein A
from Escherichia coli (Csp A, 7.3 kDa: Newkirk et al.,
1994; Feng et al., unpublished results), a homo-
dimeric double-stranded RNA-binding domain
from the in¯uenza A virus non-structural protein 1
(NS-1(1-73), 16.6 kDa: Chien et al., unpublished
results), human basic ®broblast growth factor

(FGF-2, 17.2 kDa: Moy et al., 1995), and bovine
pancreatic ribonuclease A (RNase A, 13.5 kDa:
Shimotakahara et al., 1997). Further testing was
carried out using additional triple-resonance data
obtained for two disul®de mutants of RNase A:
[C65S, C72S]-RNase A (Shimotakahara et al., 1997)
and [C40A, C95A]-RNase A. The three RNase A
data sets provide a useful case study; while their
amino acid sequences are 98% identical, about one-
third of the N-H resonance frequencies are signi®-
cantly different in the spectra of the wild-type (wt)
and mutant proteins. In addition, the spectra differ
in terms of the extent of spurious peaks, N-H de-
generacy, and extra GSs. All of the data sets for
RNase A were analyzed independently; the results
of one analysis were not used to guide the other
analyses. In the discussion that follows, we treat
these as two different study groups, ®rst compar-
ing the analyses of the ®ve distinct proteins (group
I) and subsequently, comparing the results for the
three RNase A data sets (group II).

In considering AUTOASSIGN's performance, it
is useful to describe the number of GS assignments
obtained in terms of the number expected from the
amino acid sequence. Given AUTOASSIGN's de®-
nition of a GS, only those amino acid residues that
have a backbone amide N-H group are ``directly''
assignable to a GS. In this sense, neither the
N-terminal residue nor any proline residue is
directly assignable to a GS. However, the assign-
ment of a GS to residue i also yields information
about the chemical shifts of some atoms in the pre-
ceding residue. Thus, the designated chemical
shifts of a GS pertain to a sequence-speci®c site of
interacting nuclei involving a pair of sequential re-
sidues. With this understanding, GSs are assigned
to sequence-speci®c sites that are labeled with the
name of the residue containing the corresponding
backbone N-H group. The percentage of complete
GS assignments obtained is computed as the total
number of GS assignments divided by the total
number of assignable sites in the sequence. As pro-
line and N-terminal residues do not have backbone
amide N-H groups, for a sequence of n residues
containing p prolines and one N-terminal residue,
there are only n ÿ p ÿ 1 assignable sites.

Analysis of the group I proteins

For the proteins included in group I, AUTOAS-
SIGN assigned an average of 97.6% of the assign-
able sites in the amino acid sequence to GSs
identi®ed from triple-resonance spectra, with an
error rate of 0.002 (one error{ out of 457 assigned
sites). The execution traces in Figure 4(a) plot the
fraction of GSs assigned over time, using the de-
fault stages of constraint-based matching (Figure 2)
as time intervals. Figure 4(b) summarizes the frac-
tion of sequence-speci®c C0, Ca, Cb, and Ha reson-
ance assignments determined by AUTOASSIGN
for each of these ®ve proteins.

The Z domain is exceptional, in that 88% of
the GS assignments (59 out of 67 assignable sites)

{ Because the manual analysis is generally considered
more reliable, automated assignments that are
inconsistent with subsequent or prior manual analysis
that was performed for that protein are considered
errors.
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are made in the ®rst stage by directly establish-
ing the best sequential matches. The second stage
relaxes the requirement that the designated CA-
ladder intraresidue shifts must be distinct from
corresponding chemical shifts on the CO-ladder
and achieves an additional ®ve GS assignments.
Finally, two additional GS assignments are ob-
tained in AUTOASSIGN's ®fth stage of analysis,
for a total of 66/67 sites assigned, leaving one
assignable site and one GS unassigned. Execution
time for the analysis of Z domain was about
16 seconds.

Each assignment of a GS to a site in the sequence
yields atom-speci®c resonance assignments for
those nuclei associated with the GS's CA and CO-
ladders. As can be seen from Figure 4(b), the re-
sulting resonance assignments for Z domain were
also quite complete. Thus, with 66 GSs assigned to
speci®c sites in the sequence, 71/71 Ha, 71/71 Ca,
63/71 Cb, and 66/67 C0 resonance assignments
were obtained{. This is particularly impressive con-
sidering that Z domain is highly a-helical, exhibits
signi®cant chemical shift degeneracy in the Ca and
Cb dimensions, and has 19% of its GS-root frequen-
cies partially or fully overlapped in the H-N dimen-
sions. These assignments were veri®ed by
independent manual analysis of these (and other)
triple-resonance spectra, analysis of NOESY spectra,
and self-consistent structure generation calculations
using these assignments (Tashiro et al., unpublished
results).

Like Z domain, NS-1(1-73) is a relatively small,
highly a-helical domain containing 73 amino acid

Figure 3. The X-windows interface to AUTOASSIGN. Implemented in the Tk/Tcl programming language, the main
window features a default graphical connectivity map depicting, schematically, assignments and links as they are
established. As indicated by the submenu for Assignment Tools, the software can be run either incrementally or in
fully automated batch mode. The submenu of numbered incremental steps mimics the default sequence of problem-
solving methods executed in batch mode. An additional option under the Assignment Tools includes restarting the
software from a previously de®ned state of execution. Other options on the main menubar include tools for examin-
ing and/or modifying the currently de®ned spin systems, their sequential links, designated chemical shifts, and poss-
ible (or established) sequential assignments. The Statistics menu provides tools for assessing the quality of the spectra
and performance of the software and generates tabulated reports that can be saved to a ®le. The Modify Tools allows
for interactive modi®cation of cross-peak or spin-system lists.

{ Although all of the amino acid residues include a
carbonyl group in the peptide moiety, several of the
protein data sets included only sequential (i.e. HNCO-
type) and not intraresidue (i.e. HNCACO-type)
connectivity information. In these cases, the expected
number of assigned backbone carbonyl frequencies is
equal to the number of assignable sites in the sequence,
i.e. n ÿ p ÿ 1.
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residues. However, NS-1(1-73) forms a homodimer
with a molecular mass of 16.6 kDa, and the coher-
ence-transfer ef®ciency in these triple-resonance ex-
periments is signi®cantly lower. The resulting
spectra were therefore less complete than those ob-
tained for Z domain. In addition, the extent of
backbone amide N-H overlap is more severe (i.e.
�30% of N-H cross-peaks overlap in the 2D HSQC
spectrum) and many of the chemical shifts of adja-
cent residues are very similar to one another. For
example, resonances subsequently assigned to resi-
dues Arg37 and Arg38 have the following chemical
shifts:

HN N C0 Ca Cb Ha

R37 8:48 118:0 180:2 59:5 29:8 4:42
R38 8:48 118:3 180:3 59:5 29:8 4:20

In this case two types of ambiguity arise due to: (1)
the complexity of allocating peaks to GSs on the
basis of N-H distinctions, and (2) the dif®culty of
distinguishing sequential from intraresidue triple-
resonance cross-peaks in the C0, Ca, and Cb dimen-
sions for Arg38. This second type of ambiguity is
due to the fact that the intraresidue experiments
(e.g. HNCA, CBCANH, etc.) detect sequential, as
well as intraresidue, interactions{ and occasionally
only the sequential connections are actually ob-
served. Given this intrinsic ambiguity, AUTOAS-
SIGN initially defers the interpretation of cross-
peaks in the intraresidue spectra that closely re-
semble cross-peaks in other spectra that are known
to be sequential. As a result of this ``intraresidue/
sequential degeneracy'', only 65% of the assignable
sites are assigned for NS-1 during the ®rst stage of
matching. In the second stage, however, these am-
biguous intraresidue cross-peaks are reconsidered
as possible intraresidue resonances and an ad-
ditional 12% of the assignable sites are assigned.
By the end of execution, ten additional GS assign-
ments have been obtained, for a total of 65/71
(92%) assignable sites. Six assignable sites and ®ve
GSs are left unassigned. The 65 GS assignments
provided 71/78 Ha, 68/73 Ca, 44/68 Cb, and 64/71

C0 resonance assignments via intraresidue and/or
sequential connectivities. Only about 65% of the
expected Cb resonance assignments could be de-
rived from these triple-resonance data. Subsequent
manual analyses of these triple-resonance spectra,
analysis of NOESY spectra, and self-consistent
structure generation calculations (Chien et al., un-
published results) con®rmed all of the assignments
made by AUTOASSIGN. This was the ®rst
example in which extensive resonance assignments
were made by AUTOASSIGN using data from a
protein for which assignments were not previously
known, demonstrating the reliability of the soft-
ware for simple systems. The execution time for
automated analysis of these NS-1(1-73) triple-res-
onance data was about 22 seconds.

Csp A is a small b-sheet protein composed of 69
residues. In the 3D triple-resonance spectra ob-
tained for CspA, the peaks are relatively well dis-
persed in the amide 15N and HN dimensions.
However, some of these spectra are relatively in-
complete. In addition, a few extra spin systems at-
tributed to minor species of Csp A were also
observed. As the number of observed backbone
GSs (69) exceeds the number expected (66), AUTO-
ASSIGN begins by setting aside the weakest of
these for subsequent analysis (as described in
Methods). As can be seen in the progress curve of
Figure 4(a), stage 1 of AUTOASSIGN assigns 73%
of the assignable residue sites to GSs by directly
establishing the highest quality sequential matches
between GSs. An additional 19% of GS assign-
ments are obtained during stage 2, but no further
progress is made until the weaker GSs are re-
instated in stage 4. At that point an additional 5%
of the assignable sites are assigned to GSs. The
®nal stage obtains one additional GS assignment
for a total of 65 out of 66 (98%) residue sites as-
signed. This leaves one assignable site (Gly3) and
four GSs unassigned, but as none of these remain-
ing GSs is consistent with the Gly3 site, no further
assignments are made. The resulting 65 GS assign-
ments provide 77/79 Ha, 67/69 Ca, 49/59 Cb, and
64/66 C0 resonance assignments via intraresidue
and/or sequential connections. These assignments
for Csp A have been veri®ed by manual analysis
of these (and other) triple-resonance spectra, man-
ual analysis of NOESY spectra, and self-consistent
structure generation calculations (Feng et al., un-
published results). The execution time for this

Figure 4. (a) Execution traces for
the group I proteins. The percen-
tage of GS assignments at each
stage of execution is computed as
the number of assigned GSs
divided by the total number of
assignable residue sites. Intervals
on the horizontal axis correspond

to the enumerated stages in Figure 2. (b) The percentages of assigned resonances for the proteins in group I. Each
residue that is either itself an assignable site or is followed by an assignable site is expected to have a complete set of
C0 (C), Ca, Cb, and Ha resonance assignments. The percentage of assigned resonances for each atom type is calculated
as the number assigned divided by the total number expected.

{ Sequential cross-peaks are also observed in these
``intraresidue'' triple-resonance spectra (Montelione &
Wagner, 1989, 1990; Ikura et al., 1990), but can be
identi®ed through comparisons with the corresponding
``sequential'' triple-resonance data.
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analysis of assignments by AUTOASSIGN was ap-
proximately 16 seconds.

AUTOASSIGN has also been tested on a/b pro-
teins; bovine pancreatic RNase A (RNase, 124 resi-
dues) and basic ®broblast growth factor (FGF-2;
154 residues). Both proteins exhibit a signi®cant
number of extra spin systems which have been at-
tributed to minor conformations that are in slow
exchange on the NMR timescale (Moy et al., 1995;
Shimotakahara et al., 1997). As with Csp A, the
analysis of the weakest GSs identi®ed by AUTO-
ASSIGN is deferred until the fourth stage of
matching.

For FGF-2, 141/144 assignable sites were as-
signed to GSs, leaving three assignable sites and 23
GSs unassigned. The resulting 141 GS assignments
provide 162/169 Ha, 148/153 Ca, 128/137 Cb, and
148/153 C0 resonance assignments. One of these
spin system assignments did not agree with the in-
dependent manual analysis (Moy et al., 1995), as
AUTOASSIGN assigned a GS believed to corre-
spond to a minor conformation of the protein to
position Ala20 of the major protein species. How-
ever, for these two spin systems corresponding to
major and minor environments of Ala20, all but
the backbone N-H shifts are indistinguishable. The
execution time for the analysis of FGF-2 was just
under four minutes.

For RNase A, 119/119 assignable sites were as-
signed to GSs, with 29 extraneous GSs remaining
unassigned. The resulting 119 GS assignments pro-
vide 125/127 Ha, 122/124 Ca, 120/121 Cb, and
122/124 C0 resonance assignments. These assign-
ments for RNase A have been veri®ed by sub-
sequent manual analysis of the triple-resonance
spectra and the interpretation of NOESY data
based on these assignments identi®es secondary
structure that is completely consistent with its
X-ray crystal structure (Shimotakahara et al., 1997).
The execution time for this analysis was also just
under four minutes.

The triple-resonance data sets used to generate
input for AUTOASSIGN were automatically peak-
picked and then edited by interactive graphics to
remove obvious artifactual peaks. The resulting
peak lists were far from ideal, as they were incom-
plete and and still contained many artifactual

peaks. For example, as shown in Figure 4(b) the
percentage of Cb resonances that could be assigned
from these data is consistently low relative to the
other three nuclei (i.e. Ha, Ca, and C0), due to in-
complete coherence transfer in the CBCANH and/
or CBCA(CO)NH experiments. In general, these
two spectra have signi®cantly lower sensitivity
and are often incomplete, of lower resolution,
and/or include a relatively large number of spur-
ious peaks that are not identi®ed by the simple
editing methods used in preparing the input ®les
for AUTOASSIGN. NS-1(1-73) and wt-RNase A ex-
hibited an especially large number of (generally
weak) extraneous peaks (50% and 30%, respect-
ively) in the CBCA(CO)NH spectrum; i.e. peaks
that could not be attributed to intraresidue or
sequential Ca or Cb connections for any GS. FGF-2
showed the largest number (24%) of such ``unac-
counted for'' peaks in the CBCANH spectrum. In
contrast, Csp A had relatively few unaccounted for
CBCANH peaks, but only about half of the ex-
pected peaks were actually observed.

Triple-resonance NMR spectra of proteins some-
times reveal more spin systems than are expected
from the amino acid sequence, and analysis tools
must be able to handle these. Figure 5 compares
the number of unassigned GSs to the number that
could either be assigned to residues in the se-
quence or classi®ed by AUTOASSIGN as ``side-
chain'' NH groups. For all but NS-1(1-73), the
number of assigned GSs is within 1 to 2% of the
total number of assignable-residue sites (red line).
All of these protein data sets exhibit one or more
GSs that could neither be assigned to backbone
NH sites nor classi®ed as arising from side-chain
NH groups (black portions of histograms in
Figure 5). In RNase A and FGF-2, many unas-
signed GSs arise from proposed minor confor-
mational states (Moy et al., 1995; Shimotakahara
et al., 1997); in the Csp A data the extra spin sys-
tems result from chemical heterogeneity that is due
to slow sample decomposition during the NMR
measurements (Feng et al., unpublished results). As
indicated by the black line, the number of GSs
with degenerate roots (i.e. those with overlap in
the 15N-HN dimensions) is also signi®cant in all of
these data sets, particularly for RNase A. The num-

Figure 5. Summary of observed
GSs for group I. A GS may be
assigned to a residue-speci®c site,
classi®ed as a side-chain NH, or
left unassigned. The number of
assignable residue sites is calcu-
lated as the number of amino acid
residues in the sequence excluding
the N-terminal residue, less the
number of proline residues. Two
GSs are considered overlapped if

their peaks in the HSQC and/or HNCO spectra are within the user-speci®ed match tolerances in the HN and 15N
dimensions. For Csp A, RNase A, NS-1, and Z domain, these tolerances were 0.025 p.p.m. and 0.35 p.p.m. respect-
ively; for FGF-2, tolerances of 0.02 p.p.m. and 0.25 p.p.m. were used.
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ber of GSs with degenerate N-H roots observed for
NS-1(1-73) is comparable to the number for FGF-2,
which has more than twice the sequence length of
NS-1(1-73).

Analysis of the group II proteins

Having compared the performance of AUTOAS-
SIGN on a set of ®ve different proteins, we next
compared the performance on a set of three very
similar proteins, wild-type (wt) RNase A and two
disul®de mutants, [C65S, C72S]-RNase A and
[C40A, C95A]-RNase A. The spectra for [C65S,
C72S]-RNase A were comparable with those ob-
served for wt RNaseA, but showed about 30%
fewer extraneous spin systems (20 versus 29) and
slightly less overlap in the 15N-HN dimensions.
These differences led to signi®cantly reduced ex-
ecution time (one minute, 40 seconds for [C65S,
C72S]-RNase A, versus three minutes, 53 seconds
for wt RNase A). As can be seen from Figure 6(b),
however, about 10% fewer Cb chemical shifts were
assigned for [C65S, C72S]-RNase A than for the wt
protein, due to the increased occurrence of noise
peaks in the CBCANH and CBCA(CO)NH spectra
of the mutant protein. Overall, for [C65S, C72S]-
RNase A AUTOASSIGN obtained 118/119 assign-
ments of assignable sites to GSs, providing 125/
127 Ha, 122/124 Ca, 111/121 Cb, and 122/124 C0
resonance assignments.

While the performance results for the [C40A,
C95A]-RNase A data set (blue traces in Figure 6)
are not signi®cantly different from those achieved
for wt- and [C65S, C72S]-RNase A, the execution
time increased to just under nine minutes, three
assignment errors occurred, and only 113/119
residue sites were assigned. The number of unas-
signed GSs also increased to 52, compared with 29
unassigned GSs in wt and 21 unassigned GSs in
[C65S, C72S]-RNase A. As discussed below how-
ever, about 24% of the extraneous spin systems
identi®ed for [C40A, C95A]-RNase A could be at-
tributed to peak picking artifacts rather than con-
formational heterogeneity.

AUTOASSIGN also includes interactive features
to allow editing of poorly peak-picked or other-
wise problematic peak lists. These editing features
were used to improve the performance of AUTO-
ASSIGN in the analysis of [C40A, C95A]-RNase A

assignments. For example, the following two peaks
were picked for a single spin system with an iso-
lated up®eld HN resonance frequency:

Peak
no: HN C0 15N Intensity Spectrum

132 6:74 178:7 112:8 18635030 HNCO

135 6:74 178:4 112:8 204198896 HNCO

In such cases where a weaker peak (peak 132)
could be unambiguously identi®ed as a ``shoulder''
of a stronger peak (peak 135) resulting from pro-
cessing or peak-picking artifacts, the weaker peak
was manually deleted from the ®le. Using the soft-
ware interactively to locate such problems, 16
weak peaks in the HNCO spectrum and ®ve weak
peaks in the HSQC spectrum were identi®ed as ar-
tifactual duplicates of other stronger peaks, and de-
leted. In addition, the HN chemical shift of one GS
derived from the [C40A, C95A]-RNase A spectra
(later assigned to Met30) was modi®ed by
0.01 p.p.m. to obtain a better alignment with the
corresponding peaks in the remaining spectra.
When the software was run on the resulting edited
[C40A, C95A]-RNase A data the performance was
improved signi®cantly (broken red lines in
Figure 6); the number of extraneous GSs was re-
duced from 46 to 35 and AUTOASSIGN assigned
115/119 (97%) of assignable sites to GSs and pro-
vided 123/127 Ha, 120/124 Ca, 108/121 Cb, and
121/124 C0 resonances. All of these assignments
appear to be correct, and are fully consistent with
an independent manual analysis that was made
using these same triple-resonance data (J. Laity,
H. A. Scheraga & G. T. Montelione, unpublished
results). In addition, the AUTOASSIGN execution
time for the edited data was reduced to approxi-
mately six minutes.

The data ®les input to AUTOASSIGN were cre-
ated by automatic peak picking with commercial
NMR software followed by manual editing pro-
cedures that were somewhat different for each
data set. This peak-picking and subsequent editing
process used no assumptions about the assign-
ments or structure of the protein, and in most
cases was done before the assignments were even
available. AUTOASSIGN can tolerate a good deal
of incompleteness, spurious peaks, peak frequency
perturbations, chemical shift degeneracy, and con-

Figure 6. (a) Execution traces for
the group II proteins. (b) Percen-
tages of assigned resonances for the
group II proteins. As described in
the text, two different sets of results
are reported for [C40A, C95A]-
RNase A. The ®rst of these (con-
tinuous blue lines) corresponds to
the unedited spectra; the second
(broken red lines) corresponds to
the edited spectra.
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formational and/or chemical heterogeneity that re-
sults in extraneous spin systems in the spectra.
However, as demonstrated by the data for [C40A,
C95A]-RNase A, as the quality of the peak-picked
data deteriorates, there is a point at which per-
formance is compromised. In particular, the quality
and completeness of the backbone assignments cri-
tically depend on the quality of the HNCO and
HSQC spectra and the reliability with which these
spectra are peak-picked.

Despite this sensitivity to peak-picking re-
liability, our results demonstrate that AUTOAS-
SIGN can obtain almost complete and highly
reliable assignments of backbone N, Ca, C0, HN, Ha

and side-chain Cb resonances from reasonably
good quality triple-resonance NMR data. For six of
the seven data sets studied, nearly complete back-
bone resonance assignments were obtained with
an error rate of 0.2% from the peak-picked
cross-peak ®les without any user interaction.
With the unedited [C40A, C95A]-RNase A peak
list, 95% of assignable sites were assigned to
GSs, with an error rate of 2.7% (three errors out
of 113 sites assigned) and at the expense of sig-
ni®cantly increased execution time. Minor inter-
active editing of two of the [C40A, C95A]-RNase
A peak ®les with tools available within AUTO-
ASSIGN reduced execution time by 30%, yielded
assignments for over 97% of assignable sites to
GSs, and incurred no errors. These results
suggest that while the current implementation of
AUTOASSIGN is reasonably robust with respect
to peak-picking artifacts, even better performance
can be anticipated once software is developed to
provide more consistent and reliable peak-list
input ®les.

Discussion

Reliability

For most protein NMR data sets, an exhaustive
comparison of all possible sequential assignments
is not feasible, as the number of possible solutions
increases exponentially with the length of the pro-
tein sequence. To reduce the effective search space,
AUTOASSIGN combines best-®rst search with con-
straint satisfaction methods (Mackworth, 1977;
Fox, 1986; Nadel, 1986; Kumar, 1992). The basic
idea is that at any given point of execution, the
search engine considers only those candidate sol-
utions that are still logically consistent with the
current partial solution. The risk in this approach
is that initial errors in the partial solution may be
propagated through their logical consequences.
The most challenging aspects of applying con-
straint propagation to the general problem of data
interpretation involve: (1) ensuring that errors are
rarely, if ever, introduced; and (2) minimizing the
propagation of errors once they have occurred. In
particular, the latter requires careful de®nition of
what constitutes logical inconsistencies. For

example, the assumption that the correct solution
corresponds to a simple one-to-one mapping of
GSs to assignable sites is not, in general, a sound
one, as there may be extra and/or missing spin
systems.

The results reported here were obtained for
data sets used in development as well as testing.
Although it is quite impressive that AUTOAS-
SIGN works well on these seven proteins, new
data sets may present problems that are not yet
addressed by the software. In particular, the
situations arising in these seven protein data
sets (e.g. severe N-H degeneracy and confor-
mational/chemical heterogeneity) were used to
de®ne the conditions under which certain con-
straints are applicable. Robust methods of hand-
ling overlapped and/or extraneous spin systems
were developed for these data, and should gen-
eralize well to new data sets. However, it is
conceivable that unforeseen complications may
arise in other proteins that contradict various
underlying assumptions.

Reliability also depends to some extent on the
user-speci®ed match tolerances in the backbone
amide 1H-15N dimensions (for compiling spin sys-
tems) and in the 1H-13C dimensions (for establish-
ing sequential links). These in turn depend on the
quality and resolution of the experimental data.
Default tolerances of 0.025 p.p.m. and 0.35 p.p.m.
in the HN and 15N dimensions worked well on all
of the data sets tested to date. However, in our ex-
perience, regions of some proteins exhibit reson-
ance frequencies that are very sensitive to sample
temperature and other conditions. Larger toler-
ances are less likely to omit critical peaks for
spin systems occurring in these regions of the
protein, but may introduce errors and/or increase
execution time. On the other hand, the use of
smaller HN and 15N match tolerances may signi®-
cantly reduce the number of assignments ob-
tained. Related problems occur with the match
tolerances used to establish sequential links. For
the test cases reported here, typical match toler-
ances were 0.5 p.p.m. for Ca, 0.5 p.p.m. for Cb,
0.25 p.p.m. for C0, and 0.05 p.p.m. for Ha dimen-
sions, respectively.

Comparison with other methods

Several alternative implementations for auto-
mated assignment of protein NMR spectra have
employed optimization algorithms that attempt to
minimize a pseudo-energy function or to maximize
some measure of ``goodness of ®t''. These have in-
cluded neural networks (Hare & Prestegard, 1994),
simulated annealing (Bernstein et al., 1993; Kraulis,
1994; Morelle et al., 1995), and genetic algorithms
(Wehrens et al., 1993). The assignment process is
thus mapped to a global optimization problem
with the potential of becoming trapped in local ob-
jective-function minima. Additional disadvantages
of global optimization methods such as these stem
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from their reliance on a global objective function
that assesses only alternative complete assign-
ments. As a result, the solution is biased towards a
complete set of ``acceptable'' assignments in prefer-
ence to obtaining an incomplete set that may be of
higher quality. Also, exploratory tools for incre-
mental analysis of partial assignments are not ea-
sily supported. Finally, in cases where the
complete solution is under-constrained, it may be
dif®cult to extract a reliable partial assignment
from a complete assignment obtained by global op-
timization. While it is true that individual residue-
speci®c scores may be used to interpret the results,
these methods may not distinguish ``weak'' assign-
ments that can be obtained reliably by logical pro-
cesses of elimination from those that are truly
unreliable.

Conversely, an advantage of numerical optimiz-
ation methods over best-®rst search strategies
(Nilsson, 1980), like those used in AUTOASSIGN,
is that the former may be more tolerant of spur-
ious, contradictory data, while the latter may be
somewhat ``brittle'' in its interpretations. AUTO-
ASSIGN, for example, requires that rigorous un-
iqueness and matching criteria be satis®ed in order
to progress towards a solution in the earliest stages
of analysis. Thus, if the data are so severely com-
promised that no possible links or assignments can
satisfy the initial criteria, AUTOASSIGN may
never progress to the later stages where some of
these requirements are relaxed. A second problem
is that most best-®rst search implementations pro-
gressively re®ne the single most promising partial
assignment and early errors may be dif®cult to re-
cover from. In contrast, numerical optimization
methods by de®nition explore numerous complete,
alternative assignments. For these reasons, it is
possible that with increasing noise and degra-
dation of the data, numerical optimization
methods that allow more ``probabilistic interpret-
ations'' may prove more effective than best-®rst
strategies like those used in the current implemen-
tation of AUTOASSIGN.

Other implementations of systems for automated
analysis of triple-resonance spectra (Friedrichs et al.,
1994; Meadows et al., 1994; Olsen & Markley, 1994)
more closely resemble AUTOASSIGN's approach,
in that a form of best-®rst matching is utilized to
establish sequential links. None of these, however,
combines its search strategies with constraint satis-
faction, and spin-system type information plays a
considerably less important role. In contrast, the
software described by Billeter et al. (1988) for the
analysis of homonuclear spectra has a strong con-
straint satisfaction component but lacks any heuris-
tic search strategy. It is not possible, however, to
compare the completeness and reliability of results
generated by these various implementations, as
each has been tested on considerably different ex-
perimental data and input options.

Generality and possible extensions

While it would be ideal to develop a system that
could accommodate whatever experimental data
are available, this goal is probably too ill-de®ned
for an effective computational implementation. In
the arti®cial intelligence literature, systems that at-
tempt to model general problem-solving behavior
such as this are said to use ``weak methods'' (Laird
& Newell, 1983) , as they impose minimal assump-
tions on the types of problems to which they may
be applied. At the other end of the spectrum, pro-
blem-speci®c ``strong AI'' systems place stringent
restrictions on the types of problems they can solve
and are generally more ef®cient, as their methods
of problem-solving have been tailored to those pro-
blem types. The current version of AUTOASSIGN
uses ``strong AI'', as it has been designed to utilize
a speci®c resonance assignment strategy based on
the speci®c types of experimental data described in
Figure 1.

Although it may be possible to obtain reliable as-
signments using various subsets of the triple-reson-
ance spectra indicated in Figure 1, using the
current implementation of AUTOASSIGN the sol-
ution will often be underconstrained by a lack of
suf®cient connectivity information. Rather than
force the system to infer unreliable assignments
from such data, our approach has been to develop
reliable inference methods that perform consist-
ently with data from the eight or nine NMR spec-
tra described here. However, AUTOASSIGN does
provide the user with interactive analysis tools to
support incremental matching and constraint
propagation with less complete data sets.

The experienced spectroscopist brings to the
analysis a profound understanding of the exper-
imental data, and in general, uses a model of how
the various spectra relate to one another to con-
struct ¯exible, but effective, algorithms for the in-
terpretation of these data. Attempts to implement
the spectroscopist's most general problem-solving
behavior, however, are likely to lead to more gen-
eral but less effective problem solving. A more
reasonable goal is to de®ne a subset of the poss-
ible spectral inputs that can be composed in
alternative ways to provide suf®cient information
for the sequential assignment problem. In order
for the software to then properly interpret these
data, a model of how the various spectra relate
to each other as well as a deeper computational
model of the sequential assignment problem itself
is also required. One of our current focuses is on
de®ning a more general set of spectral input that
can support increased ¯exibility in AUTOAS-
SIGN's interpretive power without signi®cantly
sacri®cing the reliability and ef®ciency that has
been achieved through specialization. Additional
types of NMR data that could be handled by
fairly simple extensions of AUTOASSIGN algor-
ithms include: (1) phase data (i.e. positive and
negative intensities) and other methods for edit-
ing triple-resonance spectra to provide classi®-
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cation of amino acid residue types (Grzesiek &
Bax, 1993; Tashiro et al., 1995; DoÈ tsh & Wagner,
1996; DoÈ tsch et al., 1996; Feng et al., 1996; RõÂos
et al., 1996); (2) HCACO-type (Ikura et al., 1990;
Kay et al., 1990; Dijkstra et al., 1994) and CBCA-
CO(CA)HA-type (Kay et al., 1992a; Kay, 1993)
spectra, as higher sensitivity replacements for
HNCACO spectra (Clubb et al., 1992), that cur-
rently provide source data for the identi®cation
of intraresidue carbonyl resonance frequencies; (3)
HBHANH (Wang et al., 1994), HBHA(CO)NH
(Grzesiek & Bax, 1993), HCCNH-TOCSY (Logan
et al., 1992; Clowes et al., 1993; Lyons &
Montelione, 1993) and/or HCC(CO)NH-TOCSY
(Logan et al., 1992; Montelione et al., 1992;
Grzesiek et al., 1993; Lyons et al., 1993) spectra,
providing sequential matching of chemical shifts
associated with more peripheral nuclei; (4) 3D
15N-edited NOESY data to con®rm proposed
backbone assignments.

Other generalizations to AUTOASSIGN's current
methods that we are considering include: (1) the
development of more robust tools for the unfold-
ing of spectra recorded at narrower sweepwidths;
and (2) methods of distinguishing Ca from Cb

chemical shifts in the CBCANH and CBCA
(CO)NH spectra directly (Grzesiek & Bax, 1992a,b)
without recourse to comparisons with CANH or
CA(CO)NH-type data as is done in the current im-
plementation.

In addition to extending the software to accept
alternative types of input, additional analysis tools
being considered include: (1) automated analysis of
complete side-chain resonance assignments; (2)
applications involving uniformly 2H, 13C, 15N-
enriched proteins (Grzesiek et al., 1995; Yamazaki
et al., 1995); (3) analysis tools that can exploit the
known chemical shifts of proteins with homolo-
gous structures (Bartels et al., 1996); (4) integration
of alternative methods of assignment (for example,
simulated annealing); (5) development of an inter-
face between the table of chemical shift assign-
ments output by AUTOASSIGN and commercially
available software capable of generating spectral
strip plots; (6) NOESY spectra assignment tools.

Conclusions

Our current approach is a generalization of
our earlier work (Zimmerman et al., 1993, 1994)
which used a similar constraint propagation net-
work together with 3D HCCNH-TOCSY and
HCC(CO)NH-TOCSY data (Logan et al., 1992;
Montelione et al., 1992; Lyons & Montelione, 1993;
Lyons et al., 1993) for determining sequence-
speci®c assignments. The present implementation
demonstrates the utility of the underlying model of
constraint satisfaction for the sequential assign-
ment problem and is the ®rst step towards a more
general model of expert problem solving in this do-
main. As implemented, the current prototype sys-
tem provides extremely useful tools for analysis of

the types of NMR data illustrated in Figure 1. For
proteins containing as many as 154 amino acid re-
sidues that yield reasonably good quality triple-
resonance NMR data sets, AUTOASSIGN provides
almost complete backbone N, C, and H and many
side-chain Cb resonance assignments in under ten
minutes. The system handles many dif®cult situ-
ations that challenge the human expert, including
extra spin systems due to chemical or confor-
mational heterogeneity, severe overlap in the N-H
and aliphatic carbon dimensions, and missing
spectral information. Given minimal editing of
automatically peak-picked data, AUTOASSIGN re-
duces the backbone resonance assignment process
to the 7 to 21 days of NMR instrument time
needed for recording the requisite data.

Methods

Input specifications

All of the peak lists analyzed by AUTOASSIGN are in
the form of ASCI text ®les listing the peak coordinates
(in p.p.m.) and intensities. Processing of the NMR spec-
tra was done using VNMR (Varian Associates),
NMRPipe (Delaglio et al., 1995), or Felix (Molecular
Simulations Inc.) programs, with automated peak pick-
ing using tools provided by NMRCompass (Molecular
Simulations Inc.), Felix (Molecular Simulations Inc.), or
PIPP (Garrett et al., 1991). For most spectra, an initial list
of automatically picked peaks was generated for each 2D
and 3D spectrum using intensity and linewidth ®lters.
This list was then edited manually to identify and elim-
inate extraneous peaks, using interactive graphics and
various general features such as the approximate ex-
pected number of peaks, the visual quality of alignment
across spectra, and peak shape criteria. However, as no
general speci®cations for peak picking were given to the
users, the user-de®ned criteria for manual editing of
peak-picked spectra varied considerably. The interactive
manual editing required about one hour per 3D NMR
data set (i.e. about ten hours for the complete set of spec-
tra), and can be carried out while data collection is in
progress, adding little to the total time required for the
complete process of determining backbone resonance
assignments.

The types of spectral data used as input for AUTOAS-
SIGN are described in Figure 1. In most cases, the re-
quired NMR data sets were generated using the
following pulsed-®eld gradient (PFG) NMR pulse se-
quences: (1) PFG - 15N - HN - HSQC (Kay et al., 1992b; Li
& Montelione, 1993); (2) PFG-H(CA)(CO)NH (Boucher
et al., 1992; Feng et al., 1996); (3) PFG-CA(CO)NH (Bou-
cher et al., 1992; Feng et al., 1996); (4) PFG-CBCA
(CO)NH (Grzesiek & Bax, 1992a; RõÂos et al., 1996); (5)
PFG-HNCO (Muhandiram & Kay, 1994); (6) PFG-
H(CA)NH (Montelione & Wagner, 1990; Feng et al.,
1996); (7) PFG-CANH (Montelione & Wagner, 1989;
Feng et al., 1996); (8) PFG-CBCANH (Grzesiek & Bax,
1992b; RõÂos et al., 1996); and (9) PFG-HNCACO (Clubb
et al., 1992). Additional ¯exibility and control of the in-
terpretation of these peak lists is provided by a speci®ca-
tions table (Table 1). This table allows the user to specify
for each spectrum important parameters such as the de-
tected atom types and expected chemical shift ranges in
each dimension, any absolute referencing corrections
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that may be required, the type of interactions detected
(intraresidue and/or sequential), and a reference spec-
trum to be used for alignment in the 15N and HN dimen-
sions.

Overview of AUTOASSIGN's strategies

The model of problem solving used by AUTOASSIGN
can be viewed as a generalization of the basic procedure
developed by WuÈ thrich (1986) and co-workers for the
analysis of homonuclear spectra. First, generic spin sys-
tems (GSs) are identi®ed by mapping the 3D cross-peaks
in the various target spectra to the corresponding peaks
in the [15N-1H]-HSQC source spectrum. Given these
mappings, the CA and CO-ladders of these GSs are then
de®ned by designating the corresponding intraresidue
and sequential Ca, Cb, C0, and Ha chemical shifts, re-
spectively. The characteristic Ca and Cb shifts associated
with different residue types are then used to obtain resi-
due-type probability scores, which are in turn used to
de®ne the set of residue types consistent with each CA
and CO-ladder. Next, sequential connectivity infor-
mation is used to establish adjacency relations between
GSs i and i � 1. As these sequential links are estab-
lished, the sequence is scanned to determine if the type
information for that pair of linked GSs de®nes a
unique pair of residue sites in the sequence. If so, the
assignments are made; otherwise, the possible assign-
ments of the linked pair are noted. In particular, links
between unassigned GSs are not con®rmed until these
GSs have been assigned to speci®c residue sites in the
protein sequence. These last three steps form a general
description of the constraint-based match cycle, de-
picted in Figure 2.

Prior to executing any of the constraint-based match
stages, a set of initialization routines are invoked,
which: (1) de®ne a list of sequence-speci®c sites (SSs)
corresponding to each residue in the protein sequence;
(2) instantiate amino acid prototypes specifying the ex-
pected resonance frequencies and standard deviations
for these SSs; (3) apply chemical shift reference correc-
tions to improve the ``between-spectra'' alignments;
and (4) compile a list of generic spin systems (GSs) in-
ferred from the triple-resonance spectra. Figure 7 illus-
trates schematically the relationships between these
data structures and the objects in AUTOASSIGN's in-
ternal representation.

Initialization of SSs and prototypes

Each residue in the sequence is initialized as a se-
quence-speci®c site (SS) with an (initially empty) list of
possible GS assignments and pointers to the preceding
and following residue sites in the sequence. For each
newly encountered amino acid type, a type-speci®c pro-
totype is also created, which the SS can then query to ob-
tain its expected Ca and Cb resonances and standard
deviations. In the event that the current residue is
another instance of a previously de®ned prototype, the
corresponding SS is simply added to that prototype's list
of instances. Table 2 shows the internal structure of an
Ile prototype generated during the analysis of Z domain.
The expected values and standard deviations of the pro-
totypes' Ca and Cb resonances are stored in AUTOAS-
SIGN's class de®nitions of amino acid prototype objects.

Spectral referencing

Before individual peaks can be mapped to GSs, the
various spectra must be referenced with respect to one
another in order to minimize the match tolerances used
in subsequent stages of analysis. The ®rst step in align-
ing the spectra in the amide N-H dimensions requires
de®ning reference peaks in the source spectra. Each such
peak must occur in a relatively isolated region in the
1H,15N dimensions of the source spectrum, and corre-
sponding peaks should be observed in all of the target
spectra. Each target spectrum may specify its own source
spectrum (see column 15 of Table 1); in most cases this is
the HSQC spectrum. Referencing of a particular target
spectrum is then achieved by uniquely mapping the
peaks in that spectrum to the source's de®ned reference
peaks, computing the average differences in the 15N and
HN dimensions, and using these differences as global re-
ference correction factors for the target spectrum.

Redundancies in the information contained in pairs of
spectra can be used to align selected spectra in the 13C
and 1H dimensions as well. For example, if spectrum A
includes only sequential peaks carrying information
about Si ÿ 1 for a selected atom type, while spectrum A0
includes both intraresidue (S0i) and sequential (S0i ÿ 1) in-
formation for that atom, then the average difference,
hSi ÿ 1 ÿ S0i ÿ 1i, can be applied as a global reference cor-
rection to the S dimension of all peaks in A0. Alterna-
tively, if A includes only information about Ca

frequencies while spectrum A0 includes information

Table 1. Table of user-de®ned spectral parameters for input to AUTOASSIGN

i i ÿ 1 X l u n Y l u n Z l u n Ref. File name

1 0 HN 4 10 0 nila N 100 135 0 nila hsqc.pks
0 1 HN 4 10 0 C0 170 180 0 N 100 135 0 hsqc hnco.pks
1 1 HN 4 10 0 Ca 40 70 0 N 100 135 0 hsqc hnca.pks
0 1 HN 4 10 0 Ca Cb 10 70 0 N 100 135 0 hsqc cbcaconh.pks
0 1 HN 4 10 0 Ca 40 70 0 N 100 135 0 hsqc hncoca.pks

The ®rst two columns indicate whether or not the spectrum includes intraresidue (i) and/or sequential (i ÿ 1) information. For two-
and three-dimensional spectra, the next three sets of four columns specify the nuclei detected in each dimension (X, Y, Z), the lower
(l) and upper (u) bounds of the corresponding frequency axes (in p.p.m.), and a global reference correction (n, in p.p.m.) for each
dimension of each spectrum. The column labeled Ref. speci®es which spectrum should be used as the source spectrum in the N-H
dimensions, and the last column indicates the ®le name of the peak list.

Each peak ®le that is to be used as input must have an entry in the speci®cations table; this example is a partial table in that
only ®ve of the eight or nine spectra that de®ne AUTOASSIGN's standard input are speci®ed.

a Values of nil indicate that the information associated with that ®eld is not applicable to the spectrum occurring in that row. In
this example, the 2D HSQC spectrum (hsqc.pks) is used as the source for referencing all of the remaining spectra in the N and HN
dimensions, so the Y-dimension nucleus and Ref. ®elds are not applicable.
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about both Ca and Cb frequencies, then spectrum A0 can
again be referenced with respect to A, in this case using
hCa ÿ Ca0i. These relations between spectra are inferred
by AUTOASSIGN from the speci®cations table (Table 1),
using columns 1, 2, and 7.

Spin system compilation

Generic spin systems (GSs) are initialized using the
HSQC and HNCO spectra. Each N-H cross-peak in the
2D HSQC spectrum is initially interpreted as the back-
bone root of a GS. All cross-peaks in the remaining 3D
spectra whose 15N and HN chemical shift values fall
within the speci®ed match tolerances of these root co-
ordinates are then added to each GS. The HNCO spec-
trum is treated specially, however, as it is of comparable
sensitivity to the HSQC spectrum and provides separ-
ation in the carbonyl dimension of GSs that are
overlapped in the N-H dimensions. Accordingly, AUTO-
ASSIGN maps only the closest HNCO peak (using nor-
malized Euclidean distance in the N-H dimensions) to
each GS having an HSQC root. Subsequently, the HNCO
spectrum is scanned to identify peaks that are not yet in-
cluded in any GS and each of these is initialized as the

root of a new ``HNCO-rooted GS''. Cross-peaks in the re-
maining 3D spectra whose 15N and HN chemical shift va-
lues fall within the tolerances are again mapped to these
new GSs whose roots are de®ned in the HNCO spec-
trum. Because AUTOASSIGN considers only those peaks
in the 3D spectra with 15N-HN frequencies similar to
those of ``root peaks'' in the HSQC and HNCO spectra,
many spurious artifactual peaks that are present in these
data are effectively ®ltered out. By de®nition, GSs with
very similar 15N-HN shifts may include some of the same
peaks from the other 3D spectra. These GSs are con-
sidered ``overlapped'' or ``degenerate''.

Identification of side-chain NH resonances

The next step in spin-system compilation involves the
identi®cation of 1H-15N correlations associated with side-
chains. In many cases, cross-peaks arising from indole
and amide side-chain nuclei have attenuated intensities
(in properly tuned triple-resonance spectra) and will not
be included in the speci®ed peak lists. When they are de-
tected, GSs arising from side-chain NH groups usually
have less than three peaks in the set of triple-resonance
spectra, and AUTOASSIGN classi®es these as side-chain

Figure 7. The relationships between objects in AUTOASSIGN's internal representations.
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GSs. While this method may occasionally misclassify
some weaker spin systems associated with backbone NH
groups as side-chains, the justi®cation is that such back-
bone GSs contain insuf®cient information for generating
reliable sequential assignments and are better left out of
the backbone resonance assignment process. This meth-
od does not, however, consider spin systems associated
with side-chain NH groups that do include a signi®cant
number of cross-peaks in these triple-resonance spectra;
additional methods are used to identify speci®cally some
of these guanido and amide side-chain NH groups.

One such method of identifying side-chain NH spin
systems uses an HSQC spectrum of larger sweep width
(e.g. 60 to 140 p.p.m. in the 15N dimension) to identify
arginine guanido N-H cross-peaks on the basis of their
characteristically up®eld 15N chemical shifts. The corre-
sponding peaks in the original HSQC spectrum are then
located by calculating the folded frequency in the 15N di-
mension. Additional side-chain NH2 correlations are
identi®ed automatically using pattern matching to the
expected pro®les of Asn and Gln side-chain 13C frequen-
cies, and removed from the list of backbone GS roots.

Separation of overlapped GSs

Signi®cant ambiguity can arise when two or more GSs
have identical (or very similar) backbone amide N-H
chemical shifts, and several methods are employed to de-
termine how peaks should be associated with degenerate
GS roots. The simplest method of crosspeak allocation
for overlapped GSs uses a nearest neighbor approach.
This method is most effective for GSs with only marginal
N-H overlap and generally reduces the extent of ambigu-
ously mapped peaks by a factor of only 2. In cases
where ``safe'' decision boundaries cannot be de®ned due
to more severe N-H overlap, the same cross-peaks may
still be included in the speci®cations of two or more GSs.
The deconvolution of these more severely overlapped
GSs is achieved using designated shifts on CA- and CO-
ladders of assigned GSs, as explained below (in Extend
Assigned Segments, stage 3).

Identification of weak spin systems
(minor conformers)

The ®nal step in spin-system compilation assesses the
number of backbone GSs (as opposed to spin systems as-
sociated with side-chain NH groups) in order to deter-
mine if there is an excess of GSs resulting from
conformational and/or chemical heterogeneity. If so, the
weakest of the backbone GSs are set aside for subsequent
analysis. The number to be set aside is determined as a

function of n, the number of assignable sites in the se-
quence. Speci®cally, AUTOASSIGN calculates k � 0.9n,
and initially focuses on only the k strongest observed
spin systems, with the remaining designated as ``weak''.
For example, for wt RNase with 150 backbone GSs and
119 assignable sites, the 42 weakest GSs are initially set
aside as ``weaker'' spin systems.

Clearly, the spin systems associated with major and
minor protein species are not separable on the basis of
intensity alone; this 90% cutoff was determined empiri-
cally in order to minimize false negatives without sacri®-
cing too many false positives or over®tting the test data.
In subsequent stages of analysis, however, GSs initially
classi®ed as ``weak'' may be assigned to the major
chemical/conformational species, while others initially
classi®ed as ``strong'' may not be assigned.

Iterative constraint-based matching

The Constraint-based Match Cycle described in
Figure 2 is not a concrete software entity, but rather re-
fers to a collection of loosely coupled routines that are
combined differently according to the stage of analysis.
Speci®c parameters (or arguments) given to a general-
purpose sequential ``match'' routine specify a set of CA-
ladders, a set of CO-ladders, a minimum match
threshold, an incremental step size, and a number of
iterations. In ``unrestricted'' matching, all CA and CO-
ladders are matched against one another. In the initial
stages, however, only the most complete ladders (e.g.
those containing Ca, Ha, Cb, and C0 rungs) are allowed to
participate. Only the ®nal stages of analysis resort to un-
restricted matching. The sequential match routine is in-
voked many times throughout execution and is coupled
to a set of constraint propagation methods that are in-
voked with each match between ladders con®rmed as a
de®nite link between GSs. As these propagation methods
may in turn lead to site-speci®c GS assignments, a
second set of constraint propagation methods that are
triggered by these assignments may also be invoked.

Three different methods of chemical shift designation
are described below. The ®rst of these is used in stages
1, 2, and 4 (Figure 2) initially to construct and sub-
sequently to re®ne the CA and CO-ladders directly from
the associated spectra. The second method is used in
stage 3 to further re®ne incompletely speci®ed ladders
using the chemical shift pro®les designated by assigned
GSs lacking predecessors or successors. The third meth-
od is used in the last stage of constraint-based matching
to correct possible discrepancies in the chemical shifts
designated by the ®rst two methods.

Initial construction and matching of CA- and CO-
ladders (stage 1)

AUTOASSIGN uses the expected redundancies be-
tween the different spectra to guide the atom-speci®c
designation of chemical shifts, which de®ne the CA- and
CO-ladders. The Ha

i ÿ 1, Ca
i ÿ 1, and C0i ÿ 1 chemical shifts

of each GS's CO-ladder can usually be determined di-
rectly from the HA(CA)(CO)NH, CA(CO)NH, and
HNCO data, respectively. For most residue types, the Cb

frequency occurs in a range easily distinguished from
the Ca frequencies. Thus for most GSs, Cb

i ÿ 1 can also be
determined unambiguously from the CBCA(CO)NH
data. However, because several residue types (e.g. Thr,
Ser, Leu) have characteristic Cb frequencies that are not
easily distinguished from Ca frequencies, AUTOASSIGN

Table 2. An example Ile prototype for Z domain

Priora 3/71
Instancesb (Ile ÿ11, Ile16, Ile31)
CaCb-statsc (60.9, 2.6, 39.4, 2.5)
Symbold I

a Prior is the number of instances of this amino acid in the
sequence, divided by the sequence length.

b Instances is a list of pointers to the SSs created for these
residues.

c CaCb-stats lists the expected Ca chemical shift, the standard
deviation for Ca, the expected Cb resonance, and the Cb stan-
dard deviation for the speci®c prototype.

d The symbol associated with a prototype is its one-letter
amino acid code.
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uses the CA(CO)NH spectrum to ®lter out Ca peaks
in the CBCA(CO)NH data and to designate the Cb

i ÿ 1

frequencies.
Similarly, the designation of intraresidue shifts on a

GS's CA-ladder involves ®ltering out sequential corre-
lations that are sometimes observed in the intraresidue
spectra{. In particular, the CBCANH spectrum must be
``doubly ®ltered'' to remove both sequential as well as
Ca frequencies in the designation of intraresidue Cb res-
onances. For most spin systems, these methods of ®lter-
ing uniquely de®ne the chemical shift information
required to construct the CA- and CO-ladders.

Three situations can arise, however, that lead to only
partially speci®ed CA- and/or CO-ladders. In instances
where the Ha, Ca, Cb, or C0 chemical shifts of residues i
and i � 1 are very similar, the true intraresidue corre-
lations are not easily distinguished from the sequential
correlations. In these cases the associated frequencies of
the CA-ladder are left undesignated until later stages of
processing where such ``intraresidue-sequential degener-
acy'' is allowed. The second situation involves degener-
ate GSs with identical (or nearly identical) 15N and HN

resonance frequencies, where several peaks may be can-
didates for the Ha, Ca, Cb, and/or C0 frequencies of the
GSs' ladders. In these cases, the corresponding resonance
shifts on the CO and CA-ladders are also left undesig-
nated. Similar complications arise with non-degenerate
GSs that include spurious peaks of comparable intensity
to the ``real'' peaks. Here again, incompletely speci®ed
CA and CO-ladders may be de®ned. Conversely, if the
observed spurious peaks are of relatively low intensity,
simple ``intensity ®lters'' are applied to extract the appro-
priate resonance frequencies. These methods of chemical
shift designation are initially applied uniformly to all
GSs. During stage 1, however, only the ladders associated
with ``stronger'' GSs are matched against one another.

Refinement and further matching of CA and
CO-ladders (stage 2)

After the ®rst cycle of constraint-based matching has
completed, AUTOASSIGN reevaluates the incompletely
speci®ed CA and CO-ladders. In this second pass (stage
2), the sequential ®lter is removed, allowing for overlap
between intraresidue and sequential cross-peaks. This
method of designating chemical shifts is essentially iden-
tical to that used for the initial construction of ladders,
the only difference being that the ``uniqueness con-
straint'' is relaxed. On average, 5 to 10% more shifts are
designated to CA and CO-ladders, and iterative con-
straint-based matching concludes the second stage of
analysis.

Extending assigned segments (stage 3)

Stage 3 of AUTOASSIGN's default execution sequence
(Extend-Assigned-Segments) is the only place where a
truly exhaustive search of the remaining solution space
is applied. At this point, 85% or more of the assignments
and links have usually been established and the desig-
nated chemical shifts of assigned GSs are now used to
guide the speci®cations of the CA and CO-ladders of the

remaining unassigned GSs. Speci®cally, the CO-ladders
of GSs occurring at the N termini of assigned segments
are used to delineate the expected values of ``missing''
CA-ladders. All peaks associated with the unassigned
GSs are examined for the possibility of construction of
CA-ladders that match these expectations. If only one
unassigned GS can be associated with an N-terminal
CO-ladder, then these peaks are designated on the CA-
ladder for that GS, the link is established, and the assign-
ment is made. Similarly, the designated CA-ladder fre-
quencies of C-terminal GSs occurring in assigned
segments are used to de®ne the chemical shifts for
``missing'' CO-ladders. All unassigned GSs are con-
sidered during this stage, including those previously set
aside as weak and those identi®ed as ``overlapped'' in
the N-H dimensions. Thus it is possible to reinstate and
assign a weaker spin system prior to stage 4 (below), but
only in those cases where the weaker GS has associated
peaks that provide a unique, high quality match to an
expected pro®le generated from some assigned GS.

Matching weak spin systems (stage 4)

The ®rst three stages of analysis exhaustively mine the
data for all inferences that can be made with relatively
high con®dence, initially focusing on the ``strongest''
spin systems. The fourth stage begins by reinstating the
remaining unassigned ``weaker'' GSs to the pool of unas-
signed GSs. A cycle of iterative constraint-based match-
ing is again invoked, this time allowing the weaker GSs
to compete with the stronger GSs for available links and
sequential assignments. The same methods of re®ning
the CA and CO-ladders of GSs used in stage 2 (above)
are applied to the weaker GSs during stage 4 (Match-
Weaker-Spins) prior to re-invoking the generic match
routines. The CA and CO-ladders at the ends of linked
segments of GSs also provide information that is used to
pull apart the multiple CA (and CO-) ladders of over-
lapped GSs.

Completing the assignments (stage 5)

The last stage of constraint-based matching begins by
scanning the current set of designated chemical shifts to
identify any obvious errors. One kind of error detected
at this stage derives from the fact that cross-peaks in the
3D CBCANH experiments arising from sequential con-
nectivities can sometimes be stronger than those arising
from intraresidue connectivities. An example scenario in-
volves an unassigned GSi whose correct, but unknown,
assignment is to SSi. Problems can arise if the intraresi-
due Cb

i ±Ni±HN
i cross-peak is too weak to be detected in

the CBCANH experiment, while the sequential Cb
i ÿ 1±

Ni±HN
i cross-peak is detected in this same experiment.

As a result, the chemical shift Cb
i ÿ 1 may be incorrectly

designated as the Cb
i chemical shift on the CA-ladder of

residue i. If this erroneous Cb chemical shift differs sig-
ni®cantly from the expected range of Cb resonance fre-
quencies for residue i, the correct SS assignment may
have been ruled out as being of incompatible type. In
stage 5, AUTOASSIGN looks for potential sites of such
errors. In such cases the Cb shift designation of the CA-
ladder is retracted, the possible SS assignments for this
GS are reinitialized, and the constraint-based match
cycle is then reinvoked.

Finally, AUTOASSIGN considers additional assign-
ments that may be obtained by a process of elimination.
For example, at this point in processing the NMR data

{ Sequential cross-peaks are also observed in these
``intraresidue'' triple-resonance spectra (Montelione &
Wagner, 1989, 1990; Ikura et al., 1990), but can be
identi®ed through comparisons with the corresponding
``sequential'' triple-resonance data.
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for Z domain, all but two GSs and two assignable sites
(His ÿ4 and Lys58) have been assigned{. Neither of
these GSs is consistent with the CO- and CA-ladders of
GSs assigned to residues Asp ÿ3 and Gln ÿ5, respect-
ively. The C-terminal residue of the sequence is adjacent
to a proline, Pro57. As only one of the unassigned GSs
has a CO-ladder consistent with a proline and a CA-lad-
der consistent with a lysine, the assignment of this GS to
Lys58 is made.

Generic routines for all stages of analysis

The following descriptions apply to routines used
throughout execution. These include methods of calculat-
ing and updating residue type probability scores, calcu-
lating match scores between ladders, establishing
sequential links between GSs, and methods of constraint
propagation.

Calculation of residue type probabilities

Whenever the Ca and/or Cb chemical shifts of a CA
or CO-ladder are initialized or revised, the residue-type
probability scores associated with that ladder are com-
puted as follows. First, the Bayesian class posterior prob-
ability (Duda & Hart, 1973) is calculated using the
expected Ca and Cb chemical shift values and standard
deviations stored with the amino acid prototype. The
class posterior probability calculated for an observed
pair of Ca/Cb chemical shifts with respect to amino acid
residue-type R is computed as:

p�R j Ca; Cb� � p�Ca; Cb j R�P�R�=�Rp�Ca;Cb j R�P�R�
�1�

where p (R j Ca, Cb) is the probability that residue-type
R has occurred given the observed chemical shift values
Ca and Cb, p (Ca, Cb j R) is the probability of observing
chemical shift values Ca and Cb, given residue type R,
and P(R) is the frequency of occurrence of residue-type R
in the protein sequence. The two variables (Ca, Cb) are
assumed to be normally distributed and independent,
with the means and standard deviations for each residue
type calculated from a database of over 1400 residues
(Seavey et al., 1991; Wishart et al., 1991). Class posterior
probabilities can be thought of as class conditional prob-
abilities weighted by the class prior probability, P(R),
and normalized by the unconditional probability of the
variable(s). This approach differs from a similar classi®-
caton scheme described by Grzesiek & Bax (1993), which
assumed identical standard deviations in 13C chemical
shift values for all amino acid residue-types and did not
take into consideration P(R).

Although probability scores are initially computed for
all residue-types occurring in the sequence, only as
many as are required to achieve a sum of 0.99990 are in-
cluded in considering the possible residue types associ-
ated with a CA or CO-ladder. With this criterion, a
given (Ca, Cb) chemical shift pair is assigned to, on aver-
age, seven possible residue types. These methods of
probabilistic classi®cation were veri®ed using eightfold

cross-validation on the original database; the correct
classi®cation was never omitted.

Establishing sequential links and
constraining assignments

Sequential links between GSs are derived from the
best type-consistent matches that can be established be-
tween the CA-ladder of one GS and the CO-ladder of
a second GS using tight match criteria. If the potential
link is both consistent with the sequence and ``unique'',
it is established. A link between CA-ladder (i) and CO-
ladder (j) is ''unique'' if there are no other high quality
matches of CA-ladder (i) to some other CO-ladder and
no other high quality matches of CO-ladder (j) to some
other CA-ladder. The match score between CA-ladder
(i) and CO-ladder (j) is calculated as Mij � eÿd(i,j),
where d(i,j) is computed as a Euclidean distance.
Speci®cally, for each ladder, a vector of normalized va-
lues is computed:

vi �
�
C0i ÿ m�C0�

s�C0� ;
Ca

i ÿ m�Ca�
s�Ca� ;

Cb
i ÿ m�Cb�

s�Cb� ;
Ha

i ÿ m�Ha�
s�Ha�

�
�2�

where the means (m) and standard deviations (s) for each
chemical shift dimension are computed over all designated
chemical shifts for that atom type. The ``distance'' between
two ladders is then computed as the Euclidean distance be-
tween their associated vectors, where the dimension of
each vector corresponds to the number of chemical shifts
(or rungs) that are common to the two ladders for which
the match score is calculated. Each such distance is greater
than or equal to zero. As a result, 0 < Mij 4 1 for all poss-
ible matches, with higher scores re¯ecting higher quality
matches. In the event that a match involves incompletely
designated chemical shifts for one or both of the two lad-
ders, the missing dimensions are masked as zeros on both
ladders. To minimize possible errors arising from such ``in-
complete'' ladders, however, AUTOASSIGN focuses on
matching the most complete ladders ®rst, and only estab-
lishes a link when the corresponding match score is the
best observed for both ladders. In addition, throughout
the ®rst four stages of execution, all links require a mini-
mum of two-dimensional matching.

The highest scoring, most complete matches are estab-
lished ®rst and the sequence is scanned to identify all
possible assignments of these new segments as they are
de®ned. As each new GS is added to a linked segment,
the set of possible assignments of all the participating
GSs are constrained to be mutually consistent with their
adjacencies in the segment and corresponding stretches
in the sequence. If the number of possible mappings of a
segment of linked GSs is reduced to one, the associated
sequence-speci®c assignments are made. Alternatively, if
no mappings are possible, the inferred sequential links
are discarded. Finally, if a number of alternative map-
pings are de®ned for a segment, the possible assign-
ments are noted and the segment is added to a list of
unassigned segments.

The constraint propagation network

The ``constraint propagation network'' (Zimmerman
et al., 1994) is a set of tightly coupled routines that are
triggered each time a sequential link or GS assignment is
established. For example, when a stretch of residues is
assigned to a particular segment of linked GSs, these

{ The ®rst 14 amino acid residues in Z domain are a
leader sequence and are designated with negative
residue numbers; for example, residue His ÿ4 is the
fourth residue from the C-terminal end of this leader
sequence.
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sites must be removed from the list of possible assign-
ments that are stored for all other GSs. This narrowing
of the possible assignments of other GSs may, in turn,
lead to additional sequential assignments and/or further
restrictions on possible links. More generally, constraints
are derived and propagated from sequential links and
assignments that can be ``ruled in'', as well as those that
can be ``ruled out'' on the basis of inconsistencies or con-
tradictions in the matching process. In this way, AUTO-
ASSIGN works progressively toward a solution in a
bootstrap fashion.

A simple example of the constraint propagation used
in AUTOASSIGN is shown in Figure 8. In this hypotheti-
cal situation, there are two dipeptide sites in the
sequence whose residue types are consistent with the
CA-ladders of the two GSs and the CO-ladder of GSi � 1.
However, only one of these dipeptide sites is also con-
sistent with the CO-ladder of GSi. Thus if the link is es-
tablished, the assignments to that dipeptide site (Asp-
Thr) will be established by the process of constraint
propagation. Conversely, if other GSs are assigned to the
Asp-Thr dipeptide site shown, the potential link between
GSi and GSi � 1 will be ruled out.

Summary of AUTOASSIGN

In summary, AUTOASSIGN's best-®rst search strat-
egies are applied to establish selectively the most reliable
links and assignments ®rst, with rigorous criteria used to

®lter out decisions involving uncertainty. The second
stage of iterative constraint-based matching relaxes the
requirement that all intraresidue cross-peaks must be
distinct from sequential cross-peaks, and allows match-
ing of less complete ladders. In the third cycle of con-
straint-based matching, additional sequential links and
assignments may be obtained through exhaustive ex-
ploration of ways to extend the assigned segments. Stage
4 reinstates the weaker spin systems whose analysis was
deferred and again invokes iterative constraint-based
matching. In the ®nal ®fth stage, the designated shifts of
assigned and unassigned GSs are scanned for obvious
discrepancies, assignments and/or designations are re-
tracted where appropriate, corrections are made where
possible, and iterative constraint-based matching is re-
peated for the last time. Finally, the remaining unas-
signed SSs and GSs are examined to determine if any
additional assignments can be inferred by a process of
elimination.
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