Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
CSP_Rank/plot_structure_comparison_funnels.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
138 lines (117 sloc)
4.51 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
from tqdm import tqdm | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import os | |
from os import listdir | |
from os.path import isfile, join | |
from paths import * | |
def determine_special_case(holo_model_path, pdb_id): | |
"""Determines the color and label for each data point based on model type""" | |
if 'exp_' + pdb_id.lower() in holo_model_path: | |
return 'green' | |
elif 'comp_' + pdb_id.lower() in holo_model_path: | |
return 'cyan' | |
elif 'v3_' in holo_model_path and 'dropout' in holo_model_path: | |
return 'blue' | |
elif 'v2_' in holo_model_path and 'dropout' in holo_model_path: | |
return 'pink' | |
elif 'dropout' in holo_model_path: | |
return 'red' | |
elif 'v2_' in holo_model_path: | |
return 'purple' | |
elif 'v3_' in holo_model_path: | |
return 'purple' | |
elif 'notemplate' in holo_model_path: | |
return 'orange' | |
elif 'multimer' in holo_model_path: | |
return 'yellow' | |
else: | |
return 'gray' | |
# Define colors and their labels | |
colors = { | |
'green': 'NMR', | |
'cyan': 'Baseline AF2', | |
'blue': 'AFS v3', | |
'pink': 'AFS v2', | |
'red': 'AFS v1', | |
'purple': 'AFS2 v2', | |
'orange': 'AF ALT', | |
'yellow': 'AFS2 v1/3', | |
'gray': 'NA' | |
} | |
# List of PDB IDs to process | |
pdb_ids = ['2jw1', '2lgk', '2lsk', '2law', '2kwv', '2mnu', '2mps', '5tp6', '5urn', '7ovc', '7jyn', '7jq8', '6h8c'] | |
for pdb_id in pdb_ids: | |
print(f"Processing {pdb_id}...") | |
# Get CSP rank score file path | |
csp_rank_score_file = os.path.join(CSP_Rank_Scores, f'CSP_{pdb_id.lower()}_CSpred.csv') | |
# Read the CSP rank scores file | |
try: | |
df = pd.read_csv(csp_rank_score_file) | |
except Exception as e: | |
print(f"Error reading CSP rank scores file for {pdb_id}: {e}") | |
continue | |
# Add special cases column | |
df['special_cases'] = df['holo_model_path'].apply(lambda x: determine_special_case(x, pdb_id)) | |
# Create figure with 4 subplots (2x2) | |
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(20, 16)) | |
# Plot 1: Consensus vs TM Score | |
for case, label in colors.items(): | |
subset = df[df['special_cases'] == case] | |
ax1.scatter(subset['tm_score'], subset['consensus'], | |
alpha=0.5, label=None, color=case) | |
ax1.set_ylabel('Consensus Score') | |
ax1.set_xlabel('TM Score') | |
ax1.set_title('Consensus Score vs TM Score') | |
ax1.grid(True, linestyle='--', alpha=0.7) | |
ax1.set_xlim(0, 1) | |
ax1.set_ylim(0, 1) | |
# Plot 2: Bayes vs TM Score | |
for case, label in colors.items(): | |
subset = df[df['special_cases'] == case] | |
ax2.scatter(subset['tm_score'], subset['consensus'] * subset['Confidence'], | |
alpha=0.5, label=label, color=case) | |
ax2.set_ylabel('Bayes Score') | |
ax2.set_xlabel('TM Score') | |
ax2.set_title('Bayes Score vs TM Score') | |
ax2.grid(True, linestyle='--', alpha=0.7) | |
ax2.set_xlim(0, 1) | |
ax2.set_ylim(0, 1) | |
# Plot 3: Consensus vs DockQ Score | |
for case, label in colors.items(): | |
subset = df[df['special_cases'] == case] | |
ax3.scatter(subset['dockq_score'], subset['consensus'], | |
alpha=0.5, label=None, color=case) | |
ax3.set_ylabel('Consensus Score') | |
ax3.set_xlabel('DockQ Score') | |
ax3.set_title('Consensus Score vs DockQ Score') | |
ax3.grid(True, linestyle='--', alpha=0.7) | |
ax3.set_xlim(0, 1) | |
ax3.set_ylim(0, 1) | |
# Plot 4: Bayes vs DockQ Score | |
for case, label in colors.items(): | |
subset = df[df['special_cases'] == case] | |
ax4.scatter(subset['dockq_score'], subset['consensus'] * subset['Confidence'], | |
alpha=0.5, label=None, color=case) | |
ax4.set_ylabel('Bayes Score') | |
ax4.set_xlabel('DockQ Score') | |
ax4.set_title('Bayes Score vs DockQ Score') | |
ax4.grid(True, linestyle='--', alpha=0.7) | |
ax4.set_xlim(0, 1) | |
ax4.set_ylim(0, 1) | |
# Adjust layout and add single legend | |
plt.subplots_adjust(right=0.85) # Make room for legend | |
fig.legend(title='Model Types', loc='center right', | |
bbox_to_anchor=(0.98, 0.5)) | |
# Add title for entire figure | |
fig.suptitle(f'Structure Comparison Metrics for {pdb_id.upper()}', | |
fontsize=16, y=0.95) | |
# Create Figures directory if it doesn't exist | |
figures_dir = os.path.join(working_dir, 'Figures') | |
os.makedirs(figures_dir, exist_ok=True) | |
# Save the plot | |
plt.savefig(os.path.join(figures_dir, f'structure_comparison_metrics_{pdb_id.lower()}.png'), | |
bbox_inches='tight', dpi=300) | |
plt.close() | |
print(f"Completed processing {pdb_id}") |