Skip to content
Permalink
main
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
from util import *
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
from matplotlib.gridspec import GridSpec
from mpl_toolkits.axes_grid1 import make_axes_locatable
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
import os
csv_file = './CSPRANK.csv'
x_col = 'AF3_DockQ_top_rank'
y_col = 'AF3_TM'
# Read data from CSV
df = pd.read_csv(csv_file)
fig = plt.figure(figsize=(8, 8))
gs = GridSpec(4, 4, figure=fig)
# Axes definitions
ax_scatter = fig.add_subplot(gs[1:4, 0:3])
ax_histx = fig.add_subplot(gs[0, 0:3], sharex=ax_scatter)
ax_histy = fig.add_subplot(gs[1:4, 3], sharey=ax_scatter)
# Scatter plot
ax_scatter.scatter(df[x_col], df[y_col], alpha=0.6, edgecolors='k')
ax_scatter.set_xlabel('AF3 DockQ')
ax_scatter.set_ylabel('AF3 TM')
ax_scatter.set_xlim(0, 1)
ax_scatter.set_ylim(0, 1)
# Add dashed red lines
ax_scatter.axhline(y=0.8, color='red', linestyle='--')
ax_scatter.axvline(x=0.4, color='red', linestyle='--')
# Shade the region x > 0.4 and y > 0.8 a light gray
ax_scatter.fill_betweenx(y=[0.8, 1], x1=0.4, x2=1, color='gray', alpha=0.3)
# Histograms
ax_histx.hist(df[x_col], bins=30, alpha=0.7, color='blue')
ax_histy.hist(df[y_col], bins=30, orientation='horizontal', alpha=0.7, color='blue')
# Turn off tick labels on hist plots for clarity
plt.setp(ax_histx.get_xticklabels(), visible=False)
plt.setp(ax_histy.get_yticklabels(), visible=False)
# Adjust spacing around subplots to make space for labels
plt.subplots_adjust(hspace=0.05, wspace=0.05)
# Save the plot
output_dir = './Figures'
os.makedirs(output_dir, exist_ok=True)
output_file = os.path.join(output_dir, 'structure_similarity_metrics_plot.png')
plt.savefig(output_file)
# Calculate the percentage of entries with AF3_TM > 0.8
percent_AF3_TM_gt_0_8 = (df['AF3_TM'] > 0.8).mean() * 100
print(f"Percentage of entries with AF3_TM > 0.8: {percent_AF3_TM_gt_0_8:.2f}%")
# Calculate the percentage of entries with AF3_DockQ_top_rank > 0.4
percent_AF3_DockQ_gt_0_4 = (df['AF3_DockQ_top_rank'] > 0.4).mean() * 100
print(f"Percentage of entries with AF3_DockQ_top_rank > 0.4: {percent_AF3_DockQ_gt_0_4:.2f}%")
# Calculate the percentage of entries with both conditions
percent_both_conditions = ((df['AF3_TM'] > 0.8) & (df['AF3_DockQ_top_rank'] > 0.4)).mean() * 100
print(f"Percentage of entries with both AF3_TM > 0.8 and AF3_DockQ_top_rank > 0.4: {percent_both_conditions:.2f}%")