Skip to content
Permalink
main
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import numpy as np
# Load data for the other plots
CSmethod = "UCBShift"
data_source_file = './csp_stats_' + CSmethod + '.csv'
df = pd.read_csv(data_source_file)
# Setting up the figure and subplots
fig, axs = plt.subplots(2, 2, figsize=(20, 20), gridspec_kw={'height_ratios': [1, 1], 'width_ratios': [1, 1]})
plt.subplots_adjust(hspace=0.4, wspace=0.4) # Increase spacing between subplots
# Calculate residuals for each pair
df['residual_2'] = df['F1_AF2'] - df['F1']
sns.scatterplot(ax=axs[0, 0], x=df['F1'], y=df['F1_AF2'])
axs[0, 0].plot([0, 1], [0, 1], color='red') # y=x line
axs[0, 0].set_title('NMR vs AF2 F1 Scores', fontsize=20)
axs[0, 0].set_xlabel('PDB F1 Score', fontsize=20)
axs[0, 0].set_ylabel('AF2 F1 Score', fontsize=20)
axs[0, 0].text(0.7, 0.1, 'PDB>AF2', color='red', fontweight='bold', fontsize=16, verticalalignment='bottom', horizontalalignment='left', transform=axs[0, 0].transAxes)
axs[0, 0].text(0.1, 0.9, 'AF2>PDB', color='red', fontweight='bold', fontsize=16, verticalalignment='top', horizontalalignment='left', transform=axs[0, 0].transAxes)
# Histogram of residuals for consensus_AF2
data = df['residual_2']
max_abs_value = max(abs(data.min()), abs(data.max()))
symmetric_range = (-max_abs_value, max_abs_value)
bin_width = (symmetric_range[1] - symmetric_range[0]) / 20
bins = np.arange(symmetric_range[0], symmetric_range[1] + bin_width, bin_width)
sns.histplot(ax=axs[0, 1], data=data, kde=True, bins=bins)
axs[0, 1].set_title('Histogram of Residuals for F1 Scores', fontsize=20)
axs[0, 1].set_xlabel('Residual', fontsize=20)
axs[0, 1].set_ylabel('Frequency', fontsize=20)
axs[0, 1].axvline(x=0.0, color='red', linestyle='-', linewidth=2)
axs[0, 1].text(0.7, 0.7, 'AF2>PDB', color='red', fontweight='bold', fontsize=16, verticalalignment='bottom', horizontalalignment='left', transform=axs[0, 1].transAxes)
axs[0, 1].text(0.05, 0.7, 'PDB>AF2', color='red', fontweight='bold', fontsize=16, verticalalignment='top', horizontalalignment='left', transform=axs[0, 1].transAxes)
# Load data for the other plots
# Calculate residuals for each pair
df['residual_2'] = df['MCC_AF2'] - df['MCC']
sns.scatterplot(ax=axs[1, 0], x=df['MCC'], y=df['MCC_AF2'])
axs[1, 0].plot([-1, 1], [-1, 1], color='red') # y=x line
axs[1, 0].set_title('NMR vs AF2 MCCs', fontsize=20)
axs[1, 0].set_xlabel('PDB MCCs', fontsize=20)
axs[1, 0].set_ylabel('AF2 MCCs', fontsize=20)
axs[1,0].set_xlim((-1,1))
axs[1,0].set_ylim((-1,1))
axs[1, 0].text(0.7, 0.1, 'PDB>AF2', color='red', fontweight='bold', fontsize=16, verticalalignment='bottom', horizontalalignment='left', transform=axs[1, 0].transAxes)
axs[1, 0].text(0.1, 0.9, 'AF2>PDB', color='red', fontweight='bold', fontsize=16, verticalalignment='top', horizontalalignment='left', transform=axs[1, 0].transAxes)
# Histogram of residuals for consensus_AF2
data = df['residual_2']
max_abs_value = max(abs(data.min()), abs(data.max()))
symmetric_range = (-max_abs_value, max_abs_value)
bin_width = (symmetric_range[1] - symmetric_range[0]) / 20
bins = np.arange(symmetric_range[0], symmetric_range[1] + bin_width, bin_width)
sns.histplot(ax=axs[1, 1], data=data, kde=True, bins=bins)
axs[1, 1].set_title('Histogram of Residuals for MCCs', fontsize=20)
axs[1, 1].set_xlabel('Residual', fontsize=20)
axs[1, 1].set_ylabel('Frequency', fontsize=20)
axs[1, 1].axvline(x=0.0, color='red', linestyle='-', linewidth=2)
axs[1, 1].text(0.7, 0.7, 'AF2>PDB', color='red', fontweight='bold', fontsize=16, verticalalignment='bottom', horizontalalignment='left', transform=axs[1, 1].transAxes)
axs[1, 1].text(0.05, 0.7, 'PDB>AF2', color='red', fontweight='bold', fontsize=16, verticalalignment='top', horizontalalignment='left', transform=axs[1, 1].transAxes)
if False:
# Calculate residuals for each pair
df['residual_2'] = df['consensus_AF2'] - df['consensus']
sns.scatterplot(ax=axs[2, 0], x=df['consensus'], y=df['consensus_AF2'])
axs[2, 0].plot([0, 1], [0, 1], color='red') # y=x line
axs[2, 0].set_title('NMR vs AF2 CSP_Rank_Scores', fontsize=20)
axs[2, 0].set_xlabel('PDB CSP_Rank_Score', fontsize=20)
axs[2, 0].set_ylabel('AF2 CSP_Rank_Score', fontsize=20)
axs[2, 0].text(0.7, 0.1, 'PDB>AF2', color='red', fontweight='bold', fontsize=16, verticalalignment='bottom', horizontalalignment='left', transform=axs[2, 0].transAxes)
axs[2, 0].text(0.1, 0.9, 'AF2>PDB', color='red', fontweight='bold', fontsize=16, verticalalignment='top', horizontalalignment='left', transform=axs[2, 0].transAxes)
# Histogram of residuals for consensus_AF2
data = df['residual_2']
max_abs_value = max(abs(data.min()), abs(data.max()))
symmetric_range = (-max_abs_value, max_abs_value)
bin_width = (symmetric_range[1] - symmetric_range[0]) / 20
bins = np.arange(symmetric_range[0], symmetric_range[1] + bin_width, bin_width)
sns.histplot(ax=axs[2, 1], data=data, kde=True, bins=bins)
axs[2, 1].set_title('Histogram of Residuals for CSP_Rank_Score', fontsize=20)
axs[2, 1].set_xlabel('Residual', fontsize=20)
axs[2, 1].set_ylabel('Frequency', fontsize=20)
axs[2, 1].axvline(x=0.0, color='red', linestyle='-', linewidth=2)
axs[2, 1].text(0.7, 0.7, 'AF2>PDB', color='red', fontweight='bold', fontsize=16, verticalalignment='bottom', horizontalalignment='left', transform=axs[2, 1].transAxes)
axs[2, 1].text(0.05, 0.7, 'PDB>AF2', color='red', fontweight='bold', fontsize=16, verticalalignment='top', horizontalalignment='left', transform=axs[2, 1].transAxes)
# Adjust spacing between subplots
plt.subplots_adjust(hspace=0.45, wspace=0.15)
plt.show()