Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
saliency-based-citation/rag_generate.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
90 lines (79 sloc)
3.85 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from transformers.trainer_utils import set_seed | |
from tqdm import tqdm | |
import argparse | |
import torch | |
import json | |
import os | |
import nltk | |
import re | |
from utils.config_loader import ConfigLoader | |
from utils.answer_helpers import LIST_INDEXER_REGEX | |
from prompts import get_rag_messages | |
def load_eli5(eli5_path): | |
with open(eli5_path, "r", encoding="utf-8") as f: | |
data = json.load(f) | |
return data | |
def trim_incomplete_sentences(text): | |
text = text.strip() | |
while text: | |
sentences = nltk.sent_tokenize(text) | |
if len(sentences) == 1: | |
break | |
last_sentence = sentences[-1] | |
if re.search(r'[.!?;]"?\s*\Z', last_sentence) and not re.match(LIST_INDEXER_REGEX, last_sentence): | |
break | |
last_sentence_pos = text.rfind(last_sentence) | |
text = text[:last_sentence_pos].rstrip() | |
return text | |
def main(args): | |
config_loader = ConfigLoader() | |
config = config_loader.load_config(args.yaml_base_config, args.yaml_config) | |
tokenizer = AutoTokenizer.from_pretrained(config['model']) | |
if not tokenizer.pad_token_id: | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.padding_side = "left" | |
model = AutoModelForCausalLM.from_pretrained(config['model'], torch_dtype=torch.float16, device_map="auto") | |
eli5_data = load_eli5(args.eli5_path) | |
generated_answers = [] | |
with tqdm(total=len(eli5_data), desc="Generating answers") as pbar: | |
for start in range(0, len(eli5_data), args.batch_size): | |
batch = eli5_data[start:start+args.batch_size] | |
batch_messages = [ | |
get_rag_messages(config, example["question"], example["docs"], example["question_ctx"]) | |
for example in batch | |
] | |
batch_inputs = tokenizer.apply_chat_template( | |
batch_messages, return_tensors="pt", continue_final_message=True, padding=True, return_dict=True | |
) | |
batch_inputs = batch_inputs.to(model.device) | |
model_kwargs = { | |
"max_new_tokens": config.get("max_new_tokens", 400), | |
"do_sample": False, | |
"pad_token_id": tokenizer.eos_token_id, | |
} | |
if config.get("temperature", 0.0) > 0.0: | |
model_kwargs["temperature"] = config["temperature"] | |
if "top_p" in config: | |
model_kwargs["top_p"] = config["top_p"] | |
model_kwargs["do_sample"] = True | |
set_seed(args.seed) | |
outputs = model.generate(**batch_inputs, **model_kwargs) | |
for output_ids in outputs: | |
answer = tokenizer.decode(output_ids[batch_inputs.input_ids.shape[-1]:], skip_special_tokens=True) | |
answer = trim_incomplete_sentences(answer) | |
generated_answers.append(answer) | |
pbar.update(len(batch)) | |
config_name = os.path.splitext(os.path.basename(args.yaml_config))[0] | |
output_path = os.path.splitext(args.eli5_path)[0] + f"_answers_{config_name}_{args.seed}.json" | |
with open(output_path, "w", encoding="utf-8") as f: | |
json.dump(generated_answers, f, indent=4) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Generate answers using RAG") | |
parser.add_argument("--eli5_path", type=str, help="Path to the ELI5 dataset JSON file", default="./data/eli5_eval_bm25_top100_reranked_oracle.json") | |
parser.add_argument("--yaml_base_config", type=str, help="Path to the base YAML config file", default="base_config.yaml") | |
parser.add_argument("--yaml_config", type=str, help="Path to the experiment-specific YAML config file", default="mistral_7B.yaml") | |
parser.add_argument("--batch_size", type=int, help="Batch size for inference", default=1) | |
parser.add_argument("--seed", type=int, help="Random seed", default=42) | |
args = parser.parse_args() | |
main(args) |