Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
CSP_Rank/AF2vsNMR.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
193 lines (157 sloc)
6.87 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from os import listdir | |
from os.path import isfile, join | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
NMR_source_file = './CSPRANK.csv' | |
data = pd.read_csv(NMR_source_file) | |
holo_pdbs = data['holo_pdb'].values | |
apo_bmrbs = data['apo_bmrb'].values | |
AF2_CSPRANK = data['consensus_AF2'].values | |
NMR_CSPRANK = data['consensus_NMR'].values | |
# Remove entries where either AF2_CSPRANK or NMR_CSPRANK is nan | |
valid_indices = ~np.isnan(AF2_CSPRANK) & ~np.isnan(NMR_CSPRANK) | |
holo_pdbs = holo_pdbs[valid_indices] | |
apo_bmrbs = apo_bmrbs[valid_indices] | |
AF2_CSPRANK = AF2_CSPRANK[valid_indices] | |
NMR_CSPRANK = NMR_CSPRANK[valid_indices] | |
assert len(NMR_CSPRANK) == len(AF2_CSPRANK), "Data length mismatch." | |
# Create the scatter plot | |
plt.figure(figsize=(20, 20)) | |
plt.scatter(NMR_CSPRANK, AF2_CSPRANK, color='b', label='AF2 vs NMR Mean') | |
from adjustText import adjust_text | |
# Plot the data as a scatter plot | |
# print(NMR_CSPRANK) | |
# print(AF2_CSPRANK) | |
# texts = [plt.text(NMR_CSPRANK[i], AF2_CSPRANK[i], ' ' + txt, fontsize=20) for i, txt in enumerate(holo_pdbs)] | |
# adjust_text(texts, arrowprops=dict(arrowstyle='->', color='red')) | |
# Add labels and title with bigger font | |
plt.xlabel('NMR Ensemble CSP_RANK Scores', fontsize=50) | |
plt.ylabel('AF2 Ensemble CSP_RANK Scores', fontsize=50) | |
# plt.title('AF2 vs NMR ensemble average CSP_RANK', fontsize=40) | |
plt.text(0.7, 0.4, 'PDB>AF2', color='red', fontweight='bold', fontsize=50, verticalalignment='bottom', horizontalalignment='left' ) | |
plt.text(0.35, 0.8, 'AF2>PDB', color='red', fontweight='bold', fontsize=50, verticalalignment='top', horizontalalignment='left' ) | |
# plt.legend() | |
print("ENSEMBLE") | |
# Get the number of rows where AF2_CSPRANK > NMR_CSPRANK | |
num_rows_AF2_greater = np.sum(AF2_CSPRANK > NMR_CSPRANK) | |
print(f"Number of rows where AF2_CSPRANK > NMR_CSPRANK: {num_rows_AF2_greater}") | |
num_rows_AF2_greater = np.sum(AF2_CSPRANK > NMR_CSPRANK - 0.1) | |
print(f"Number of rows where AF2_CSPRANK > NMR_CSPRANK - 0.1: {num_rows_AF2_greater}") | |
# Set the x and y axis limits to [0, 1] | |
plt.xlim(0.3, 0.9) | |
plt.ylim(0.3, 0.9) | |
# Set the x and y axis ticks font size | |
plt.tick_params(axis='both', which='major', labelsize=30) | |
# Plot the x=y line in red | |
plt.plot([0, 1], [0, 1], 'r-', label='x=y') | |
# Save the figure | |
output_dir = './Figures/' | |
output_file = 'AF2_vs_NMR_CSPRANK_scatter_plot.png' | |
plt.savefig(join(output_dir, output_file)) | |
# plt.show() | |
plt.cla() | |
plt.clf() | |
# Create the scatter plot | |
plt.figure(figsize=(20, 20)) | |
plt.scatter(NMR_CSPRANK, AF2_CSPRANK, color='b', label='AF2 vs NMR Mean') | |
from adjustText import adjust_text | |
# Plot the data as a scatter plot | |
# print(NMR_CSPRANK) | |
# print(AF2_CSPRANK) | |
texts = [plt.text(NMR_CSPRANK[i], AF2_CSPRANK[i], ' ' + txt, fontsize=20) for i, txt in enumerate(holo_pdbs)] | |
adjust_text(texts, arrowprops=dict(arrowstyle='->', color='red')) | |
# Add labels and title with bigger font | |
plt.xlabel('NMR Ensemble CSP_RANK Scores', fontsize=50) | |
plt.ylabel('AF2 CSP_RANK Scores', fontsize=50) | |
plt.title('AF2 vs NMR ensemble average CSP_RANK', fontsize=40) | |
plt.legend() | |
# Set the x and y axis limits to [0, 1] | |
plt.xlim(0, 1) | |
plt.ylim(0, 1) | |
# Set the x and y axis ticks font size | |
plt.tick_params(axis='both', which='major', labelsize=30) | |
# Plot the x=y line in red | |
plt.plot([0, 1], [0, 1], 'r-', label='x=y') | |
# Save the figure | |
output_dir = './Figures/' | |
output_file = 'AF2_vs_NMR_CSPRANK_scatter_plot_labels.png' | |
plt.savefig(join(output_dir, output_file)) | |
# plt.show() | |
############################################################################################################ | |
NMR_source_file = './CSPRANK_top_rank.csv' | |
data = pd.read_csv(NMR_source_file) | |
holo_pdbs = data['holo_pdb'].values | |
apo_bmrbs = data['apo_bmrb'].values | |
AF2_CSPRANK = data['consensus_AF2'].values | |
NMR_CSPRANK = data['consensus_NMR'].values | |
# Remove entries where either AF2_CSPRANK or NMR_CSPRANK is nan | |
valid_indices = ~np.isnan(AF2_CSPRANK) & ~np.isnan(NMR_CSPRANK) | |
holo_pdbs = holo_pdbs[valid_indices] | |
apo_bmrbs = apo_bmrbs[valid_indices] | |
AF2_CSPRANK = AF2_CSPRANK[valid_indices] | |
NMR_CSPRANK = NMR_CSPRANK[valid_indices] | |
assert len(NMR_CSPRANK) == len(AF2_CSPRANK), "Data length mismatch." | |
# Create the scatter plot | |
plt.figure(figsize=(20, 20)) | |
plt.scatter(NMR_CSPRANK, AF2_CSPRANK, color='b', label='AF2 vs NMR Mean') | |
from adjustText import adjust_text | |
# Plot the data as a scatter plot | |
# print(NMR_CSPRANK) | |
# print(AF2_CSPRANK) | |
# texts = [plt.text(NMR_CSPRANK[i], AF2_CSPRANK[i], ' ' + txt, fontsize=20) for i, txt in enumerate(holo_pdbs)] | |
# adjust_text(texts, arrowprops=dict(arrowstyle='->', color='red')) | |
# Add labels and title with bigger font | |
plt.xlabel('NMR medoid CSP_RANK Scores', fontsize=50) | |
plt.ylabel('AF2 top-rank CSP_RANK Scores', fontsize=50) | |
# plt.title('AF2 top-rank vs NMR medoid CSP_RANK', fontsize=40) | |
plt.text(0.7, 0.4, 'PDB>AF2', color='red', fontweight='bold', fontsize=50, verticalalignment='bottom', horizontalalignment='left' ) | |
plt.text(0.35, 0.8, 'AF2>PDB', color='red', fontweight='bold', fontsize=50, verticalalignment='top', horizontalalignment='left' ) | |
# plt.legend() | |
# Set the x and y axis limits to [0, 1] | |
plt.xlim(0.3, 0.9) | |
plt.ylim(0.3, 0.9) | |
# Set the x and y axis ticks font size | |
plt.tick_params(axis='both', which='major', labelsize=30) | |
# Plot the x=y line in red | |
plt.plot([0, 1], [0, 1], 'r-', label='x=y') | |
# Save the figure | |
output_dir = './Figures/' | |
output_file = 'AF2_vs_NMR_CSPRANK_top_rank_scatter_plot.png' | |
plt.savefig(join(output_dir, output_file)) | |
# plt.show() | |
print("TOP_RANK") | |
# Get the number of rows where AF2_CSPRANK > NMR_CSPRANK | |
num_rows_AF2_greater = np.sum(AF2_CSPRANK > NMR_CSPRANK) | |
print(f"Number of rows where AF2_CSPRANK > NMR_CSPRANK: {num_rows_AF2_greater}") | |
num_rows_AF2_greater = np.sum(AF2_CSPRANK > NMR_CSPRANK - 0.1) | |
print(f"Number of rows where AF2_CSPRANK > NMR_CSPRANK - 0.1: {num_rows_AF2_greater}") | |
plt.cla() | |
plt.clf() | |
# Create the scatter plot | |
plt.figure(figsize=(20, 20)) | |
plt.scatter(NMR_CSPRANK, AF2_CSPRANK, color='b', label='AF2 vs NMR Mean') | |
from adjustText import adjust_text | |
# Plot the data as a scatter plot | |
# print(NMR_CSPRANK) | |
# print(AF2_CSPRANK) | |
texts = [plt.text(NMR_CSPRANK[i], AF2_CSPRANK[i], ' ' + txt, fontsize=20) for i, txt in enumerate(holo_pdbs)] | |
adjust_text(texts, arrowprops=dict(arrowstyle='->', color='red')) | |
# Add labels and title with bigger font | |
plt.xlabel('NMR medoid CSP_RANK Scores', fontsize=30) | |
plt.ylabel('AF2 top-rank CSP_RANK Scores', fontsize=30) | |
plt.title('AF2 top-rank vs NMR medoid CSP_RANK', fontsize=40) | |
plt.legend() | |
# Set the x and y axis limits to [0, 1] | |
plt.xlim(0, 1) | |
plt.ylim(0, 1) | |
# Set the x and y axis ticks font size | |
plt.tick_params(axis='both', which='major', labelsize=30) | |
# Plot the x=y line in red | |
plt.plot([0, 1], [0, 1], 'r-', label='x=y') | |
# Save the figure | |
output_dir = './Figures/' | |
output_file = 'AF2_vs_NMR_CSPRANK_top_rank_scatter_plot_labels.png' | |
plt.savefig(join(output_dir, output_file)) | |
# plt.show() | |
############################################################################################################ |