Skip to content

add floor data and adjusted bar plot #58

Merged
merged 1 commit into from Dec 2, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Jump to
Jump to file
Failed to load files.
Diff view
Diff view
3 changes: 2 additions & 1 deletion app.R
Expand Up @@ -260,7 +260,8 @@ server <- function(input, output, session) {
# "google-maps" style plot
output$hourly_crowd <- renderPlot({
# get data to feed into make_plot
data <- user_predictions %>% filter(weekday == application_state$day & Building == application_state$building)
data <- user_predictions_fl %>% filter(weekday == application_state$day & Building == application_state$building)
# browser()
make_plot(data, application_state$time, application_state$building, hits_per_wap_semester_by_building_max)
}, bg="transparent")

Expand Down
25 changes: 18 additions & 7 deletions read_wapData.R
Expand Up @@ -50,7 +50,7 @@ rpi_wap_stats <- readRDS("../COVID_RPI_WiFi_Data/rpi_wifi_semester_day_summary.r
#buildinginfo <- readRDS("../COVID_RPI_WiFi_Data/buildinginfo.rds")

#user_prediction: Building, weekday, Hour, users, Mean_Usercount, latitude, longitude, buildingType
user_predictions <- readRDS("../COVID_RPI_WiFi_Data/median_last3wks_with_floors.rds")
user_predictions_fl <- readRDS("../COVID_RPI_WiFi_Data/median_last3wks_with_floors.rds")

################################################################################################################
###CLEANING DATA
Expand Down Expand Up @@ -81,11 +81,12 @@ hits_per_wap_semester_by_building_max <- hits_per_wap_semester_by_building_max %
hits_per_wap_semester_by_building_max <- hits_per_wap_semester_by_building_max %>% group_by(Building) %>% summarise_all(funs(max)) %>% ungroup() %>% select(Building, usercount_max)
colnames(hits_per_wap_semester_by_building_max) <- c('Building', 'capacity')

user_predictions <- user_predictions %>%
user_predictions <- user_predictions_fl %>%
dplyr::group_by(Building, Weekday, Hour, lat, lng, BuildingType) %>%
dplyr::summarize(totalusers = sum(users)) %>%
ungroup()

names(user_predictions_fl)[names(user_predictions_fl) == 'Weekday'] <- 'weekday'
names(user_predictions)[names(user_predictions) == 'Weekday'] <- 'weekday'
names(user_predictions)[names(user_predictions) == 'totalusers'] <- 'users'

Expand Down Expand Up @@ -323,26 +324,36 @@ capacity_intercept <- function(capacity){
cut <- c(c1, c2, c3, capacity)
}

cbPalette <- c("#8dd3c7", "#ffffb3", "#bebada", "#fb8072", "#80b1d3", "#fdb462", "#b3de69", "#fccde5", "#d9d9d9", "#bc80bd")

# Function to make bar plot
make_plot <- function(dat, time_now, building_select, hits_per_wap_semester_by_building_max){
building_select_cap <- subset(hits_per_wap_semester_by_building_max, hits_per_wap_semester_by_building_max$Building == building_select)
cap_line <- capacity_intercept(building_select_cap$capacity)
ggplot(dat, aes(x=factor(Hour), y=users, fill=(Hour==time_now))) +
geom_bar(stat="identity") +
scale_fill_manual(values=c("skyblue3","mediumvioletred")) +
geom_vline(xintercept = as.integer(time_now)+1, linetype = "dotted") +
dat$Floor <- factor(dat$Floor)
ggplot(dat, aes(x=factor(Hour), y=users, fill=forcats::fct_rev(Floor))) +
# ggplot(dat, aes(x=factor(Hour), y=users, fill=(Hour==time_now))) +
geom_rect(alpha.f=0.1, xmin=as.integer(time_now)+.5, xmax=as.integer(time_now)+1.5, ymin=-Inf, ymax=Inf, fill="#c8f7c8") +
geom_bar(stat="identity", color = "black") +
# scale_fill_manual(values=cbPalette) +
scale_fill_manual(values = c("0"="#8dd3c7", "1"="#ffffb3", "2"="#bebada", "3"="#fb8072", "4"="#80b1d3", "5"="fdb462",
"6"="#b3de69", "7"="fccde5", "8"="#d9d9d9", "9"="#bc80bd")) +
# scale_fill_manual(values=c("skyblue3","mediumvioletred")) +
# geom_vline(xintercept = as.integer(time_now)+1, linetype = "dotted") +
geom_hline(yintercept = cap_line, linetype = "dotted") +
scale_x_discrete(labels= Time_AMPM) +
scale_y_continuous(breaks = cap_line, labels = c("25%", "50%", "75%", "100%")) +
ylab("Building Capacity") +
labs(fill = "Floor") +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
plot.background = element_blank(),
axis.ticks.y = element_blank(),
axis.ticks.x = element_blank(),
axis.title.x=element_blank(),
legend.position="none")
legend.position="bottom",
legend.background = element_blank())
}

icon <- awesomeIcons(icon = 'ios-close', iconColor="black", library='ion', markerColor="green")